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Abstract - Brain Computer Interface (BCI) enables the capturing 
and processing of motor imagery related brain signals which can be 
interpreted by computers. BCI systems capture the motor imagery 
signals via Electroencephalogram or Electrocorticogram. The 
processing of the signal is usually attempted by extracting feature 
vectors in the frequency domain and using classification algorithms to 
interpret the motor imagery action. In this paper we investigate the 
motor imagery signals obtained from  dataset using the Fast Hartley 
Transform (FHT) for feature vector extraction and feature reduction 
using support vector machine. The processed data is trained and 
classified using the Bayes Net  , Navie Bayes and Bayesian Logistic 
Regression.

Index Terms - EEG (Electro-encephalogram), BCI (Brain Computer 
Interface), Navie Bayes Bayes Net and Bayesian Logistic Regression.

I. INTRODUCTION
A brain-computer interface, sometimes called a direct neural 
interface or a brain machine interface, is a direct communication 
pathway between a human or animal brain(or brain cell culture) 
and an external device. BCIs are often aimed at assisting, 
augmenting or repairing human cognitive or sensory-motor 
functions. In one BCIs, [1,2] computers either accept commands 
from the brain or send signals to it but not both. Two way BCIs 
will allow brains and external devices to exchange information in 
both directions but have yet to be successfully implanted in 
animals or humans.

Brain-machine interfaces promise to aid paralyzed patients by 
re-routing movement-related signals around damaged parts of the 
nervous system. A new study in Nature demonstrates a human with 
spinal injury manipulating a screen cursor and robotic devices by 
thought alone. Implanted electrodes in his motor cortex recorded 
neural activity, and translated it into movement commands. 
With recent advances in technology and knowledge, pioneering 
researchers could now conceivably attempt to produce BCIs that 
augment human functions rather than simply restoring them, 
previously only a possibility in science fiction.

II. EEG DATA
An electroencephalogram (EEG) is a test used to detect 
abnormalities related to electrical activity of the brain. This 
procedure tracks and records brain wave patterns. Small metal 
discs with thin wires (electrodes) are placed on the scalp, and then 
send signals to a computer to record the results.
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Normal electrical activity in the brain makes a recognizable 
pattern. Through an EEG [3], doctors can look for abnormal 
patterns that indicate seizures and other problems.
The most common reason an EEG [4] is performed is to diagnose 
and monitor seizure disorders. EEGs can also help to identify 
causes of other problems such as sleep disorders and changes in 
behavior. EEGs are sometimes used to evaluate brain activity after 
a severe head injury or before heart or liver transplantation.

III. DISCRETE HARTLEY TRANSFORM
A discrete Hartley transform (DHT) is a Fourier-related 
transform of discrete, periodic data similar to the discrete Fourier 
transform (DFT), with analogous applications in signal processing 
and related fields. Its main distinction from the DFT is that it 
transforms real inputs to real outputs, with no intrinsic 
involvement of complex numbers. Just as the DFT is the discrete 
analogue of the continuous Fourier transform, the DHT is the 
discrete analogue of the continuous Hartley transform. Because 
there are fast algorithms for the DHT analogous to the fast Fourier 
transform (FFT), the DHT was originally proposed by R. N. 
Bracewell in 1983 as a more efficient computational tool in the 
common case where the data are purely real. It was subsequently 
argued, however, that specialized FFT algorithms for real inputs or 
outputs can ordinarily be found with slightly fewer operations than 
any corresponding algorithm for the DHT. In particular, the DHT 
analogue of the Cooley-Tukey algorithm is commonly known as 
the Fast Hartley Transform (FHT) [5] algorithm. 

Discrete Hartley transform is an analogue of discrete 
Fourier transform for real data. The Hartley transform takes a real 
sequence as an input. The result is also a real sequence: 

For some time it was considered that Hartley transform can be a 
faster alternative to the real Fourier transform, but later it was 
found out that there are FFT algorithms, which are a little more 
efficient than the corresponding FHT [6, 7] algorithms. 

IV SUPPORT VECTOR MACHINE
A support vector machine (SVM) [8,9] is a concept in computer 
science for a set of related supervised learning methods that 
analyze data and recognize patterns, used for classification and 
regression analysis. The standard SVM takes a set of input data 
and predicts, for each given input, which of two possible classes 
the input is a member of, which makes the SVM a 
non-probabilistic binary linear classifier. Given a set of training 
examples, each marked as belonging to one of two categories, an 
SVM training algorithm builds a model that assigns new examples 
into one category or the other. An SVM model is a representation 
of the examples as points in space, mapped so that the examples of 
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the separate categories are divided by a clear gap that is as wide as 
possible. New examples are then mapped into that same space and 
predicted to belong to a category based on which side of the gap 
they fall on.

A support vector machine constructs a hyperplane or set of 
hyperplanes in a high- or infinite- dimensional space, which can be 
used for classification, regression, or other tasks. Intuitively, a 
good separation is achieved by the hyperplane that has the largest 
distance to the nearest training data points of any class (so-called 
functional margin), since in general the larger the margin the lower 
the generalization error of the classifier.

The original problem may be stated in a finite dimensional space, 
it often happens that the sets to discriminate are not linearly 
separable in that space. For this reason, it was proposed that the 
original finite-dimensional space be mapped into a much 
higher-dimensional space, presumably making the separation 
easier in that space. To keep the computational load reasonable, 
the mapping used by SVM schemes are designed to ensure that dot 
products may be computed easily in terms of the variables in the 
original space, by defining them in terms of a kernel 
function K(x,y) selected to suit the problem. The hyperplanes in 
the higher dimensional space are defined as the set of points whose 
inner product with a vector in that space is constant. The vectors 
defining the hyperplanes can be chosen to be linear combinations 
with parameters � i of images of feature vectors that occur in the 
data base. With this choice of a hyperplane, the points x in the 
feature space that are mapped into the hyperplane are defined by 
the relation:

��� iK(xi,x) = constant

Note that if K(x,y) becomes small as y grows further from x, each 
element in the sum measures the degree of closeness of the test 
point x to the corresponding data base point xi. In this way, the 
sum of kernels above can be used to measure the relative nearness 
of each test point to the data points originating in one or the other 
of the sets to be discriminated. Note the fact that the set of points x
mapped into any hyperplane can be quite convoluted as a result 
allowing much more complex discrimination between sets which 
are not convex at all in the original space.

V BAYESIAN NETWORKS
Bayesian networks (BNs), also known as belief networks (or 
Bayes nets for short), belong to the family of probabilistic 
graphical models (GMs). These graphical structures are used to 
represent knowledge about an uncertain domain. In particular, 
each node in the graph represents a random variable, while the 
edges between the nodes represent probabilistic dependencies 
among the corresponding random variables. These conditional 
dependencies in the graph are often estimated by using known 
statistical and computational methods. Hence, BNs combine 
principles from graph theory, probability  theory, computer 
science, and statistics.

GMs with undirected edges are generally called Markov random 
fields or Markov networks. These networks provide a simple 
definition of independence between any two distinct nodes based 
on the concept of a Markov blanket. Markov networks are popular 
in fields such as statistical physics and computer vision. 

BNs correspond to another GM structure known as a directed 
acyclic graph (DAG) that is  popular in the statistics, the machine 
learning, and the artificial intelligence societies. BNs are both 
mathematically rigorous and intuitively understandable. They 
enable an effective representation and computation of the joint 
probability distribution (JPD) over a set of random variables.

The structure of a DAG is defined by two sets: the set of nodes 
(vertices) and the set of directed edges. The nodes represent 
random variables and are drawn as circles labeled by the variable 
names. The edges represent direct dependence among the 
variables and are drawn by arrows between nodes. In particular, an 
edge from node Xi to node Xj represents a statistical dependence 
between the corresponding variables. Thus, the arrow indicates 
that a value taken by Variable Xj depends on the value taken by 
variable Xi, or roughly speaking that variable Xi “influences” Xj .
Node Xi is then referred to as a parent of Xj and, similarly, Xj is 
referred to as the child of Xi. An extension of these genealogical 
terms is often used to define the sets of “descendants” – the set of 
nodes that can be reached on a direct path from the node, or 
“ancestor” nodes – the set of nodes from which the node can be 
reached on a direct path. The structure of the acyclic graph 
guarantees that there is no node that can be its own ancestor or its 
own descendent. Such a condition is of vital importance to the 
factorization of the joint probability of a collection of nodes as 
seen below. Note that although the arrows represent direct causal 
connection between the variables, the reasoning process can 
operate on BNs by propagating information in any direction .

A BN reflects a simple conditional independence statement. 
Namely that each variable is independent of its nondescendents in 
the graph given the state of its parents. This property is used to 
reduce, sometimes significantly, the number of parameters that are 
required to characterize the JPD of the variables. This reduction 
provides an efficient way to compute the posterior probabilities 
given the evidence.

In addition to the DAG structure, which is often considered as the 
“qualitative” part of the model, one needs to specify the 
“quantitative” parameters of the model. The parameters are 
described in a manner which is consistent with a Markovian 
property, where the conditional probability distribution (CPD) at 
each node depends only on its parents. For discrete random 
variables, this conditional probability is often represented by a 
table, listing the local probability that a child node takes on each of 
the feasible values – for each combination of values of its parents. 
The joint distribution of a collection of variables can be 
determined uniquely by these local conditional probability tables 
(CPTs).

Bayesian networks are used to represent essential information in 
databases in a network structure. The network consists of edges 

and vertices, where the vertices are events and the edges relations
between events. A simple Bayesian network is illustrated in figure 
where symptoms are dependent on a disease, and a disease is 
dependent on age, work and work environment. Bayesian 
networks are easy to interpret for humans, and are able to 
store causal relationships, that is, relations between causes and 
effects. The networks can be used to represent domain knowledge, 
and it is possible to control inference and produce explanations on 
a network. A Bayesian network is shown in Fig, representing the 
probability distribution P: 

A Bayesian Network Representing the Distribution P.
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VI NAIVE BAYES CLASSIFIER
Bayes classifier [10] is a simple probabilistic classifier based on 
applying Bayes' theorem (from Bayesian statistics) with strong 
(naive) independence assumptions. A more descriptive term for 
the underlying probability model would be "independent feature 
model".

Depending on the precise nature of the probability model, naive 
Bayes classifiers can be trained very efficiently in a supervised 
learning setting. In many practical applications, parameter 
estimation for naive Bayes models uses the method of maximum 
likelihood; in other words, one can work with the naive Bayes 
model without believing in Bayesian probability or using any 
Bayesian methods.

VII LOGISTIC REGRESSION
Logistic regression (sometimes called the logistic model or logit 
model) [11] is used for prediction of the probability of occurrence 
of an event by fitting data to a logit function logistic curve. It is a 
generalized linear model used for binomial regression. Like many 
forms of regression analysis, it makes use of several predictor 
variables that may be either numerical or categorical.

VIII RESULT
Bayes Net result
=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances      61.3095 %
Incorrectly Classified Instances    38.6905 %
Kappa statistic                                0.2178
Mean absolute error                       0.4364
Root mean squared error                0.497 
Relative absolute error                   87.4669 %
Root relative squared error             99.5084 %
Total Number of Instances             168     

Detailed Accuracy By Class
TP 
Rate   

FP 
Rate   

Precisi
on

Recal
l

F-Mea
sure   

ROC 
Area  

Class

0.5 0.28 0.615 0.5 0.552 0.631 hand
0.72 0.5 0.612 0.716 0.66 0.631 foot

Weighted Avg.  
TP 
Rate   

FP 
Rate   

Precisi
on

Recall F-Measu
re   

ROC 
Area  

0.61 0.397 0.613 0.613 0.608 0.631

=== Confusion Matrix ===

a        b   <-- classified as
40     40 |      a = hand
25     63 |      b = foot

Naïve bayes 
=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances       57.1429 %
Incorrectly Classified Instances    42.8571 %
Kappa statistic                               0.1419
Mean absolute error                      0.4357
Root mean squared error               0.6462
Relative absolute error                  87.338  %

Root relative squared error            129.3775 %
Total Number of Instances            168     

=== Detailed Accuracy By Class ===
TP 
Rate   

FP 
Rate   

Precisi
on

Recal
l

F-Mea
sure   

ROC 
Area  

Class

0.56 0.42 0.549 0.563 0.556 0.548 hand
0.58 0.44 0.593 0.58 0.586 0.552 foot

Weighted Avg. 
TP 
Rate   

FP 
Rate   

Precisi
on

Recall F-Measu
re   

ROC 
Area  

0.57 0.429 0.572 0.571 0.572 0.55

=== Confusion Matrix ===

a         b       <-- classified as
45       35       |  a = hand
37       51       |  b = foot

Bayesian Logistic regression

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances        46.4286 %
Incorrectly Classified Instances      53.5714 %
Kappa statistic                                 -0.085 
Mean absolute error                         0.5357
Root mean squared error                  0.7319
Relative absolute error                     107.3768 %
Root relative squared error               146.5425 %
Total Number of Instances               168     

Detailed Accuracy By Class 
TP 
Rate   

FP 
Rate   

Precisi
on

Recal
l

F-Mea
sure   

ROC 
Area  

Class

0.33 0.41 0.419 0.325 0.366 0.458 hand
0.59 0.68 0.491 0.591 0.536 0.458 foot

Weighted Avg.  
TP 
Rate   

FP 
Rate   

Precisi
on

Recall F-Measu
re   

ROC 
Area  

0.46 0.55 0.457 0.464 0.455 0.458

=== Confusion Matrix ===
a           b   <-- classified as
26     54     |   a = hand
36     52     |   b = foot

Figure 1:  CLASSIFICATION ACCURACY 
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IX CONCLUSION
In this paper feature vector was extracted from the dataset using 
Fast Hartley Transform. Sub set selection of the obtained features 
after normalization was achieved using Support Vector Machine. 
Bayes Net, Naïve bayes, logistic regression  was used to train and 
classify the extracted sub features. Result show classification 
accuracy of over 60% in Bayes Net. Further investigation has to be 
done to improve the classification accuracy on a small number of 
attributes.
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