

 Journal of Computer Applications (JCA)

 ISSN: 0974-1925, Volume IV, Issue 4, 2011

119

Abstract—Schema-matching problem is the most basic level
refers to the problem of mapping schema elements in one
information repository to corresponding elements in a second
repository. Schema matching is one of the key challenges in
information integration. In fact, significant improvements will
be observed. The technique that is in the existing paper is an
instance-based technique. I emphasize that our claims is that
this technique, is not the best of techniques to apply as a useful
addition to a suite of automated schema mapping tools. I
propose a new usage-based schema matching technique. The
proposed technique exploits the usage information of the
attributes in the query logs to find matches, in contrast to
relying on the schema information or the data instances. The
existing methods for weighted graph matching Algorithms for
schema matching is compared with the new proposed methods
of 1) Direct Tree Search 2) Ullman 3) Clique 4) Hash coding.
The performance and accuracy of the schema matching of the
various techniques are compared and analyzed.
Index Terms—Attribute dependency, graph matching,
quadratic assignment problem (QAP), Schema matching,
WGMP.

I. INTRODUCTION
The schema-matching problem at the most basic level refers to the
problem of mapping schema elements (for example, columns in a
relational database schema) in one information repository to
corresponding elements in a second repository. While schema
matching has always been a problematic and interesting aspect of
information integration, the problem is exacerbated as the number
of information sources to be integrated, and hence, the number of
integration problems that must be solved, grows. Such
schema-matching problems arise both in “classical” scenarios
such as company mergers and in “new” scenarios such as the
integration of diverse sets of queriable information sources over
the web. Purely manual solutions to the schema-matching problem
are too labor intensive to be scalable; as a result, there has been a
great deal of research into automated techniques that can speed
this process by either automatically discovering good mappings, or
by proposing likely matches that are then verified by some human
expert.
In this paper, we present such an automated technique that is
designed. Assistance in the particularly difficult cases in which the
column names and data values are “opaque,” and/or cases in which
the column names are opaque and the data values in multiple
columns are drawn from the same domain. Our approach works by
computing the “mutual information” between pairs of columns
within each schema, and then using this statistical characterization

Manuscript received, 14-Dec-2011.
S.Thiruvenkatasamy a,*, Assistant Professor,
Department of Computer Science and Engineering,
Shree Venkateshwara Hi-Tech Engineering College, Gobi
E-mail: samysdotcom@yahoo.com
C.Sathyapriya b, 1 , Assistant Professor,
Department of Information Technology,
Shree Venkateshwara Hi-Tech Engineering College, Gobi
E-mail: c.sathyapriya@gmail.com

of pairs of columns in one schema to propose matching pairs of
columns in the other schema. To clarify our aims and provide some
context, consider a classical schema mapping problem where two
employee tables are integrated. First, one logical approach is to
compare attribute names across the tables. Some of the attribute
names will be clear candidates for matching, due to common
names or common parts of names. Using the classification
approach is on schema-based matching, the technique we propose
in this paper is also an instance-based technique. However, it
applies to the cases where previously proposed techniques do not
apply because

1. It does not rely on any interpretation of data values
2. It considers correlations among the columns in each table.

We emphasize that our claim is not that our technique dominates
previously proposed techniques (it does not); rather, since it
applies where previous techniques do not apply; it is a useful
addition to a suite of automated schema mapping tools. To gain
insight into our approach, consider the example tables in Table 1.
Suppose these tables are from two automobile plants in different
companies. Imagine that the column names of the second table and
data instances in columns B and C are some incomprehensible
values to the schema-matching tools. Conventional instance-based
matchers may find correspondence between the columns Model
and A due to their syntactic similarity. However, no further
matches are likely to be found because the two columns B

Table 1
Two Tables from Car Part Databases

and C cannot be interpreted, and they share exactly same statistical
characteristics; that is, they have the same number of unique
values, similar distributions, and so forth.
To make progress in such a difficult situation, our technique
exploits dependency relationships between the attributes in each
table.
For instance, in the first table in Table 1, there will exit some
degree of dependency between Model and Tire if model partially
determines the kinds of tires a car can use. On the other hand,
perhaps Model and Color are likely to have very little
interdependency. If we can measure the dependency between
columns A and B and columns A and C, and compare them with
the dependency measured from the first table, it may be possible to
find the remaining correspondences.

 Effective Integration by Inter-Attribute
Dependency graphs of schema matching

S.Thiruvenkatasamy a,*, C.Sathyapriya b,1

Effective Integration by Inter-Attribute Dependency Graphs of Schema Matching

120

As we can see, an advantage of using dependency relations in
schema matching is that this approach does not require data
interpretation; that is, even if the data sets in the schemas to be
matched use different encodings, considers correlations among the
columns in each table we can still measure the dependency
relations. As a result, our proposed matching technique can be
applied to multiple unrelated domains without retraining or
customization. We refer to matching techniques that are not
dependent of data interpretation as uninterrupted matching.

II. UNINTERPRETED MATCHING
In this section, we describe in detail our uninterpreted
structure-matching technique[13]. The algorithm[3] takes two
table instances as input and produces a set of matching node pairs.
Our approach works in two main steps as shown below:

1. G1ß Table2DepGraph (S1);
 G2ß Table2DepGraph (S2) and
2. (Gi(a),G2(b)) ß GraphMatch(G1,G2)
Where Si = input table, Gi = dependency graph,
(G1(a), G2(b)) = matching node pair.

The function Table2DepGraph() in the first step transforms an
input table like the one shown in Fig. 2a into a dependency graph
shown in Fig. 2c. The function GraphMatch() in the second step
takes as input the two dependency graphs generated in the first
step and produces a mapping between corresponding nodes in the
two graphs. The two steps are described in detail later in this
section.
A. Modeling Dependency Relation
Consider the example illustrated in Fig. 2. Figs. 2a and 2b show
two four-column input tables, and Figs. 2c and 2d show the
corresponding dependency graphs. The Table2DepGraph ()
function produces such dependency graphs by calculating the pair
wise mutual information over all pairs of attributes in a table and
structuring them in an undirected labeled graph. For instance,
each edge in the dependency graph G1 (Fig. 2c) has a label
indicating mutual information between the two adjacent nodes; for
example, the mutual information between nodes A and B is 1.5,
and so on. The label on a node represents the entropy of the
attribute, which is equivalent to its mutual information with itself
or self-information. Hence, we can model our dependency graph in
a simple symmetric square matrix of mutual information, which is
defined as follows:
B. Dependency graph
Let S be a schema instance with n attributes and aj(l < i < n) be its
ith attribute. We define dependency graph of schema S using
square matrix M by M = (rriij), where nrnj = MI(cii; cij), 1 < i, j <
n. The intuition behind using mutual information as a dependency
measure is twofold:

1) it is value independent; hence, it can be used in
 uninterpreted matching
2) it captures complex correlations between two probability

 distributions in single number, which simplifies the
 matching task in the second stage of our algorithm.

Figure 2.Two input table examples and their dependency

graphs.

A weight on an edge represents mutual information between the
two adjacent attributes and a weight on a node represents entropy
of the attribute (or equivalently, self-information MI (A; A)). (a)
Example table S1. (b) Example table S2. (c) Dependency graph G1
of S1. (d) Dependency graph G2 of S2.

III. MATCHING STRATEGIES
In this section, we investigate efficient approximation algorithms
for the graph-matching problem in the second step of our
approach. We focus our discussion particularly on the bijective
mapping problem for two reasons.
1) The solution to this problem can be used as an integral part of

the general solutions for the other two problems because the
other problems can be formulated with multiple bijective
mappings. For example, an injective mapping between
graphs S (m nodes) and T (n nodes, where m > n) can be
solved by finding an n node sub graph of S that minimizes the
bijective[5] mapping distance to T. The partial mapping
problems can be formulated similarly. Of course, this may not
be an ideal solution for them. Evaluating this approach versus
approaches specifically tailored to the injective and partial
mapping problems is an interesting area for future work.

2) The problem can be formulated in a clean mathematical
optimization framework and because of that a large number
of approximation algorithms have been developed. We will
investigate a spectrum of the solutions covering a wide range
of optimization techniques that can work for our problem
context.

In what follows, we introduce five weighted graph-matching
algorithms:

1. Umeyama’s eigen-decomposition (ED) approach,
2. Linear programming (LP),
3. Convex quadratic programming (QP),
4. Hill climbing (HC), and, finally,
5. Branch and bound.

A. Eigen-Decomposition Approach
Umeyama introduced a polynomial time approximate algorithm
for WGMP in the context of a vision problem. The proposed
algorithm relaxes the original problem of finding the permutation
matrix P to the problem of finding an orthogonal matrix X that
minimizes the metric. The algorithm then finds an approximate
solution for the original problem by manipulating the solution
obtained from the relaxed problem. The relaxed problem can be
written a

B. Linear Programming Approach
A lm ohamad and Duffuaa introduced an LP approach for the
WGMP. Whereas Umeyama [9] relaxed the permutation matrix to
an orthogonal matrix, their algorithm relaxes the original problem
of finding a permutation matrix P to the problem of finding a
doubly stochastic matrix X that minimizes the distance between
the graphs. A doubly stochastic matrix X = (x^) has a linear
constraint as follows:

Xij0,xij=1., xij=1, forall I and j
Obviously, a permutation matrix is a special case of a doubly
stochastic matrix. Another interesting aspect of this approach is
that it optimizes the L1 distance metric and not the L2 distance
metric. This essentially makes it possible to formulate WGMP as
an LP optimization problem.
C.Convex Quadratic Programming Approach
Anstreicher and Brixius introduced a new bound for the quadratic
assignment problem (QAP) [4]. The new bound is obtained by
relaxing QAP to a convex QP optimization problem. Schellewald
et al. showed that WGMP can be reduced to QAP and solved QAP
by minimizing the new bound much the same way; we can relax
WGMP directly to a convex QP problem. Unlike the LP

 Journal of Computer Applications (JCA)

 ISSN: 0974-1925, Volume IV, Issue 4, 2011

121

relaxation, we do not need to choose an alternative metric. The
relaxation process is given below.
D. Hill-Climbing Approach
So far, we have considered three deterministic approximation
algorithms for WGMP[11]. All of them are based on the relaxation
of the original problem to an algebraic optimization framework.
We now introduce a simple nondeter-ministic, iterative
improvement algorithm. The HC algorithm is simply a loop that
moves, in each state transition, to a state where the most
improvement can be achieved. A state represents a permutation
that corresponds to a mapping between the two graphs. We limit
the set of all states reachable from one state in a state transition, to
a set of all permutations obtained by one swapping of any two
nodes in the permutation corresponding to the current state. The
algorithm stops when there is no next state available that is better
than the current state. As we can see, it is nondeterministic;
depending on where it starts, even for the same problem, the final
states may differ. To avoid being stuck in a local minimum after an
unfortunate run, the usual practice is to perform some number of
random restarts.
E. Branch and Bound Approach
Due to the combinatorial nature of the problem, an exact search
algorithm would hardly be practical, but we present here one based
on the branch andbound method for the purpose of comparison. As
we will see in the experiments, this approach cannot handle
problems as large as those handled by we will see in the
experiments, this approach cannot handle problems as large as
those handled by problems large as those handled by the
approximate algorithms. Our implementation of the branch and
bound is to approach for WGMP algorithm.
The branch and bound[7] in Algorithm generates an initial
permutation for the mapping using a fast approximate algorithm. It
then constructs a permutation tree using the initial mapping as the
seed. It traverses the tree in depth first order while improving the
distance bound. If the current prefix produces a distance worse
than the current bound, it branches to the next sibling without
exploring the sub tree. When it reaches to the leaf it computes the
distance with the current permutation. If it is better than the current
bound, it updates the bound and backtracks to the next available
permutation. So far, we have investigated algorithms for
WGMP[2]. These algorithms take as input two dependency graphs
generated in the first step and find the mapping between them.
Among the three mathematical optimization algorithms, the ED
approach is the fastest. It runs asymptotically in the order of n3,
where n is the number of nodes in an input graph. The other two
algorithms, LP and convex QP approaches, run asymptotically in
the order of n6 for the same n. The branch and bound is obviously
the slowest as it performs the exact search. Lastly, the HC
algorithm is a heuristic interactive improvement algorithm, and its
running time largely depends on the number of restarts, seed
selection.

IV. EXPERIMENTS
In this section, we present the results of schema-matching
experiments using our proposed approach.
The validation is performed in two steps. In the first step, we
attempt to address the first question (in Section II) asking if the
proposed schema-matching framework works given the
assumption that we have a perfect graph-matching algorithm.
A. Injective Mapping
In this experiment, we kept the target schema size constant at 22
attributes while increasing the source schema size from 2 to 20
attributes. As was the case in the bijective mapping experiments,
the census data match result is slightly better than that of the lab
exam data. For example, when the schema size reached 20, census
data yielded 91 percent precision while lab exam data turned out
only 80 percent.
In both data sets, mutual information matching outperformed
entropy-only matching. The precision of lab exam data matching

was improved approximately 31 percent (from 61 percent in
entropy only to 80 percent with mutual information), while
precision in census data improved 12 percent (from 81 percent in
entropy only to 91 percent for mutual information). We see that
mutual information was more helpful for the lab exam data than it
was for the census data. This is because in the lab exam data, more
attributes had similar entropy, so that entropy-only mapping was
more likely to get “confused.” Turning now to compare our two
metrics, euclidean and normal, the euclidean distance[9] metric
yielded better results overall in both data sets. To summarize the
situation up to this point, we have considered the performance of
two matching methods and two distance metrics, and the results
have been consistent with those in the bijective mapping case.
However, there is a notable difference: the precision of matching
in the injective case improves as the size of source schema
increases, which is the opposite of what we saw in the bijective
mapping.
B. Data Set
We used real-world data sets from two different data domains:
medical data[6] and census data[8]. The medical data set we used
in our experiments contains patients’ lab exam results for
diagnosing thrombosis shows the measured entropies of 30
randomly chosen attributes of the thrombosis lab exam data, and it
also shows a fragment of the first 10 (out of the 30) attributes’ data
values. The original table contains 12 years worth of patient exam
records, which is approximately 50,000 tuples, and each tuple
consists of 44 attributes representing test types. The column data
types are mostly numeric, and a significant portion of the table is
left blank. Our basic experimental technique with the medical data
set was to range partition the original table into two sub tables
based on exam dates and to use these two sub tables for
experiments. Obviously, we “knew” the correct answer for the
mapping, but the mapping algorithm did not. For our second data
set, we used census data. Attribute entropies and a table fragment
from the census data set, respectively. We used two state census
data files, CA and NY, in our experiments, each table consists of
240 attributes. We ran the experiments over a randomly chosen set
of 30 attributes.
C.Approximate Matching Algorithms for Schema Matching
In this section, we try to address the second question asking if
there is an efficient algorithm for matching that works for our
problem context. We present the experimental results for valuating
the algorithms introduced in Section 3. We examined the five
algorithms:

1. Umeyama’s ED approach,
2. the LP approach,
3. the convex QP approach,
4. the HC approach, and finally,
5. the branch and bound algorithm.

For HC, we used five iterations, each from a randomly chosen
starting point, and chose the best result from the five trials. The
computational complexity of an algorithm is another important
factor to consider when we choose an algorithm. An exact search
algorithm such as branch and bound would obviously be the best
in terms of the accuracy but it could be too slow for some of the
large problems.

V. CONCLUSION AND FUTURE ENHANCEMENTS
We have proposed a two-step schema-matching technique that
works even in the presence of opaque column names and data
values. In the first step, we measure the pairwise attribute
correlations in the tables to be matched and construct dependency
graph using mutual information as a measure of the dependency
between attributes. In the second stage, we find matching node
pairs across the dependency graphs byrunninga graph-matching
algorithm[10]. To our knowledge, our work is the first to introduce
an uninterrupted matching technique utilizing interattri-bute
dependency relations. We have shown that while a single column
uninterrupted matching such as entropy-only matching can be

Effective Integration by Inter-Attribute Dependency Graphs of Schema Matching

122

somewhat effective alone, further improvement was possible by
exploiting interattribute correlations. In this work, we also
investigated approximation algorithms for the matching problem
and showed that an efficient implementation can be possible for
our approach. Among the algorithms we evaluated, the HC
approach showed the most promising results. It found close to
optimal solutions very quickly, suggesting that the graph-matching
problems arising in our schema-matching domain are amenable to
HC[12].
A good deal of room for future work exists. In our work, we have
only tested two simple distance metrics— Euclidean and normal.
It is possible that more sophisticated distance metrics could
produce better results. It would also be interesting to evaluate
other dependency models using different uninterrupted methods.

REFERENCES
[1] Baatz.S, Frank.M, Kuhl.C, Martini.P, and Scholz.C,“

Conjunctive Query Equivalence of Keyed Relational
Schemas,”, in Proceedings of the IEEE INFOCOM, the
Annual Joint Conference of the IEEE Computer and
Communications Societies, June 2007, pp. 782–790.

[2] R. Fagin, P.G. Kolaitis, L. Popa, and W.C. Tan, “Quasi-
Inverses of Schema Mappings,” Proc. 26th ACM
SIGACT-SIGMOD-SIGART Symp. principles of Database
Systems (PODS ’07), pp. 123-132, 2007.

[3] R. Fagin, P.G. Kolaitis, L. Popa, and W.C. Tan,
“Quasi-Inverses of Schema Mappings,” Proc. 26th ACM
SIGACT-SIGMOD-SIGART Symp. Principles of Database
Systems (PODS ’07), pp. 123-132, 2007.

[4] B. He and K.C.-C. Chang, “Making Holistic Schema Matching
Robust: An Ensemble Approach,” Proc. 11th ACM SIGKDD
Int’’ Conf. Knowledge Discovery in Data Mining (KDD ’09),
pp. 429-438,2009.

[5] S. Melnik, A. Adya, and P.A. Bernstein, “Compiling Mappings
to Bridge Applications and Databases,” Proc. ACM SIGMOD
’09,pp. 461-472, 2009.

[6] C. Domshlak, A. Gal, and H. Roitman, “Rank Aggregation for
Automatic Schema Matching,” IEEE Trans. Knowledge and
Data Eng., vol. 19, no. 4, pp. 538-553, Apr. 2007.

[7] S. Castano, V. Antonellis, and S. Vimercati, “Global Viewing
of Heterogeneous Data Sources,” IEEE Trans. Knowledge and
Data Eng., vol. 13, no. 2, pp. 277-297, Mar./Apr. 2001.

[8] W.-S. Li and C. Clifton, “SEMINT: A Tool for Identifying
Attribute Correspondences in Heterogeneous Databases Using
Neural Networks,” J. Data and Knowledge Eng., vol. 33, no. 1,
Dec. 2009.

[9] R. Fagin, P.G. Kolaitis, L. Popa, and W.C. Tan,
“Quasi-Inverses of Schema Mappings,” Proc. 26th ACM
SIGACT-SIGMOD-SIGART Symp. Principles of Database
Systems (PODS ’09), pp. 123-132, 2009.

[10] R. Fagin, P.G. Kolaitis, L. Popa, and W.C. Tan, “Composing
Schema Mappings: Second-Order Dependencies to the
Rescue,” ACM Trans. Database Systems, vol. 30, no. 4, pp.
994-1055, 2007.

[11] P. Shvaiko and J. Euzenat, A Survey of Schema-Based
Matching Approaches, pp. 146-171, 2005.

[12] P.A. Bernstein, T.J. Green, S. Melnik, and A. Nash,
“Implementing Mapping Composition,” Proc. 32nd Int’l
Conf. Very Large Data Base (VLDB ’06), pp. 55-66, 2006.

[13] C. Domshlak, A. Gal, and H. Roitman, “Rank Aggregation
for Automatic Schema Matching,” IEEE Trans. Knowledge
and Data Eng., vol. 19, no. 4, pp. 538-553, Apr. 2007.

BIOGRAPHY
S.Thiruvenkatasamy, received his Post
Graduate Degree in Master of Engineering
in Computer Science, from Karpagam
University, Coimbatore, Tamil Nadu, India.
Currently he is working as Assistant
Professor in the Department of Computer
Science and Engineering in Shree
Venkateshwara Hi-Tech Engineering
College, Gobichettipalayam, Tamil Nadu,

India. He published a book “An Excellent Guide for Visual
C#.Net” and had presented 6 Papers in Various National
Conferences. His interest includes Data mining, computer
networks and Network security.

C.Sathyapriya, received her Post Graduate
Degree in Master of Engineering in Computer
Science, from Velalar College of Engineering
and Technology, Erode, Tamil Nadu, India.
Currently she is working as Assistant
Professor in the Department of Information
Technology in Shree Venkateshwara Hi-Tech
Engineering College, Gobichettipalayam,

Tamil Nadu, India. She had presented 9 papers in Various
National Conference and also she presented 1 International
Conference on “A Test Generation Method to Find Errors in
HTML Language” in VIT University, Vellore, Tamil Nadu, India
on 21st April 2011. Her interest includes Software Engineering,
Computer Networks and Data Mining.

	I. Introduction
	II. Uninterpreted Matching
	III. Matching Strategies
	IV. Experiments
	V. Conclusion And Future Enhancements
	References
	Biography

