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Abstract—Schema-matching problem is the most basic level 
refers to the problem of mapping schema elements in one 
information repository to corresponding elements in a second 
repository. Schema matching is one of the key challenges in 
information integration. In fact, significant improvements will 
be observed. The technique that is in the existing paper is an 
instance-based technique. I emphasize that our claims is that 
this technique, is not the best of techniques to apply as a useful 
addition to a suite of automated schema mapping tools. I 
propose a new usage-based schema matching technique. The 
proposed technique exploits the usage information of the 
attributes in the query logs to find matches, in contrast to 
relying on the schema information or the data instances. The 
existing methods for weighted graph matching Algorithms for 
schema matching is compared with the new proposed methods 
of 1) Direct Tree Search 2) Ullman 3) Clique 4) Hash coding. 
The performance and accuracy of the schema matching of the 
various techniques are compared and analyzed.  
Index Terms—Attribute dependency, graph matching, 
quadratic assignment problem (QAP), Schema matching, 
WGMP. 

I. INTRODUCTION 
The schema-matching problem at the most basic level refers to the 
problem of mapping schema elements (for example, columns in a 
relational database schema) in one information repository to 
corresponding elements in a second repository. While schema 
matching has always been a problematic and interesting aspect of 
information integration, the problem is exacerbated as the number 
of information sources to be integrated, and hence, the number of 
integration problems that must be solved, grows. Such 
schema-matching problems arise both in “classical” scenarios 
such as company mergers and in “new” scenarios such as the 
integration of diverse sets of queriable information sources over 
the web. Purely manual solutions to the schema-matching problem 
are too labor intensive to be scalable; as a result, there has been a 
great deal of research into automated techniques that can speed 
this process by either automatically discovering good mappings, or 
by proposing likely matches that are then verified by some human 
expert. 
In this paper, we present such an automated technique that is 
designed. Assistance in the particularly difficult cases in which the 
column names and data values are “opaque,” and/or cases in which 
the column names are opaque and the data values in multiple 
columns are drawn from the same domain. Our approach works by 
computing the “mutual information” between pairs of columns 
within each schema, and then using this statistical characterization  
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of pairs of columns in one schema to propose matching pairs of 
columns in the other schema. To clarify our aims and provide some 
context, consider a classical schema mapping problem where two 
employee tables are integrated. First, one logical approach is to 
compare attribute names across the tables. Some of the attribute 
names will be clear candidates for matching, due to common 
names or common parts of names. Using the classification 
approach is on schema-based matching, the technique we propose 
in this paper is also an instance-based technique. However, it 
applies to the cases where previously proposed techniques do not 
apply because 

1. It does not rely on any interpretation of data values  
2. It considers correlations among the columns in each table. 

We emphasize that our claim is not that our technique dominates 
previously proposed techniques (it does not); rather, since it 
applies where previous techniques do not apply; it is a useful 
addition to a suite of automated schema mapping tools. To gain 
insight into our approach, consider the example tables in Table 1. 
Suppose these tables are from two automobile plants in different 
companies. Imagine that the column names of the second table and 
data instances in columns B and C are some incomprehensible 
values to the schema-matching tools. Conventional instance-based 
matchers may find correspondence between the columns Model 
and A due to their syntactic similarity. However, no further 
matches are likely to be found because the two columns B 
 

Table 1 
Two Tables from Car Part Databases 

 
and C cannot be interpreted, and they share exactly same statistical 
characteristics; that is, they have the same number of unique 
values, similar distributions, and so forth. 
To make progress in such a difficult situation, our technique  
exploits dependency relationships between the attributes in each 
table.  
For instance, in the first table in Table 1, there will exit some 
degree of dependency between Model and Tire if model partially 
determines the kinds of tires a car can use. On the other hand, 
perhaps Model and Color are likely to have very little 
interdependency. If we can measure the dependency between 
columns A and B and columns A and C, and compare them with 
the dependency measured from the first table, it may be possible to 
find the remaining correspondences. 
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As we can see, an advantage of using dependency relations in 
schema matching is that this approach does not require data 
interpretation; that is, even if the data sets in the schemas to be 
matched use different encodings, considers correlations among the 
columns in each table we can still measure the dependency 
relations. As a result, our proposed matching technique can be 
applied to multiple unrelated domains without retraining or 
customization. We refer to matching techniques that are not 
dependent of data interpretation as uninterrupted matching. 

II. UNINTERPRETED MATCHING 
In this section, we describe in detail our uninterpreted 
structure-matching technique[13]. The algorithm[3] takes two 
table instances as input and produces a set of matching node pairs. 
Our approach works in two main steps as shown below: 

1. G1ß Table2DepGraph (S1);  
      G2ß Table2DepGraph (S2) and 
2. (Gi(a),G2(b)) ß GraphMatch(G1,G2) 
Where Si = input table, Gi = dependency graph, 
(G1(a), G2(b)) = matching node pair. 

The function Table2DepGraph() in the first step transforms an 
input table like the one shown in Fig. 2a into a dependency graph 
shown in Fig. 2c. The function GraphMatch() in the second step 
takes as input the two dependency graphs generated in the first 
step and produces a mapping between corresponding nodes in the 
two graphs. The two steps are described in detail later in this 
section. 
A. Modeling Dependency Relation 
Consider the example illustrated in Fig. 2. Figs. 2a and 2b show 
two four-column input tables, and Figs. 2c and 2d show the 
corresponding dependency graphs. The Table2DepGraph () 
function produces such dependency graphs by calculating the pair 
wise mutual information over all pairs of attributes in a table and 
structuring them in an undirected labeled graph.  For instance, 
each edge in the dependency graph G1 (Fig. 2c) has a label 
indicating mutual information between the two adjacent nodes; for 
example, the mutual information between nodes A and B is 1.5, 
and so on. The label on a node represents the entropy of the 
attribute, which is equivalent to its mutual information with itself 
or self-information. Hence, we can model our dependency graph in 
a simple symmetric square matrix of mutual information, which is 
defined as follows: 
B. Dependency graph 
Let S be a schema instance with n attributes and aj(l < i < n) be its 
ith attribute. We define dependency graph of schema S using 
square matrix M by M = (rriij), where nrnj = MI(cii; cij), 1 < i, j < 
n. The intuition behind using mutual information as a dependency 
measure is twofold:  

1) it is value independent; hence, it can be used in 
      uninterpreted matching 
2) it captures complex correlations between two probability 

             distributions in single number, which simplifies the 
              matching task in the second stage of our algorithm. 
 

 
Figure 2.Two input table examples and their dependency 

graphs. 

A weight on an edge represents mutual information between the 
two adjacent attributes and a weight on a node represents entropy 
of the attribute (or equivalently, self-information MI (A; A)). (a) 
Example table S1. (b) Example table S2. (c) Dependency graph G1 
of S1. (d) Dependency graph G2 of S2. 

III. MATCHING STRATEGIES 
In this section, we investigate efficient approximation algorithms 
for the graph-matching problem in the second step of our 
approach. We focus our discussion particularly on the bijective 
mapping problem for two reasons.  
1)    The solution to this problem can be used as an integral part of 

the general solutions for the other two problems because the 
other problems can be formulated with multiple bijective 
mappings. For example, an injective mapping between 
graphs S (m nodes) and T (n nodes, where m > n) can be 
solved by finding an n node sub graph of S that minimizes the 
bijective[5] mapping distance to T. The partial mapping 
problems can be formulated similarly. Of course, this may not 
be an ideal solution for them. Evaluating this approach versus 
approaches specifically tailored to the injective and partial 
mapping problems is an interesting area for future work. 

2)    The problem can be formulated in a clean mathematical 
optimization framework and because of that a large number 
of approximation algorithms have been developed. We will 
investigate a spectrum of the solutions covering a wide range 
of optimization techniques that can work for our problem 
context. 

In what follows, we introduce five weighted graph-matching 
algorithms: 

1. Umeyama’s eigen-decomposition (ED) approach, 
2. Linear programming (LP), 
3. Convex quadratic programming (QP), 
4. Hill climbing (HC), and, finally, 
5. Branch and bound. 

A. Eigen-Decomposition Approach 
Umeyama introduced a polynomial time approximate algorithm 
for WGMP in the context of a vision problem. The proposed 
algorithm relaxes the original problem of finding the permutation 
matrix P to the problem of finding an orthogonal matrix X that 
minimizes the metric. The algorithm then finds an approximate 
solution for the original problem by manipulating the solution 
obtained  from the relaxed problem. The relaxed problem can be 
written a 
 

 
 

B. Linear Programming Approach 
A lm ohamad and Duffuaa introduced an LP approach for the 
WGMP. Whereas Umeyama [9] relaxed the permutation matrix to 
an orthogonal matrix, their algorithm relaxes the original problem 
of finding a permutation matrix P to the problem of finding a 
doubly stochastic matrix X that minimizes the distance between 
the graphs. A doubly stochastic matrix X = (x^) has a linear 
constraint as follows: 

Xij0,xij=1., xij=1, forall I and j 
Obviously, a permutation matrix is a special case of a doubly 
stochastic matrix. Another interesting aspect of this approach is 
that it optimizes the L1 distance metric and not the L2 distance 
metric. This essentially makes it possible to formulate WGMP as 
an LP optimization problem.  
C.Convex Quadratic Programming Approach 
Anstreicher and Brixius introduced a new bound for the quadratic 
assignment problem (QAP) [4]. The new bound is obtained by 
relaxing QAP to a convex QP optimization problem. Schellewald 
et al. showed that WGMP can be reduced to QAP and solved QAP 
by minimizing the new bound much the same way; we can relax 
WGMP directly to a convex QP problem. Unlike the LP 
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relaxation, we do not need to choose an alternative metric. The 
relaxation process is given below. 
D. Hill-Climbing Approach 
So far, we have considered three deterministic approximation 
algorithms for WGMP[11]. All of them are based on the relaxation 
of the original problem to an algebraic optimization framework. 
We now introduce a simple nondeter-ministic, iterative 
improvement algorithm. The HC algorithm is simply a loop that 
moves, in each state transition, to a state where the most 
improvement can be achieved. A state represents a permutation 
that corresponds to a mapping between the two graphs. We limit 
the set of all states reachable from one state in a state transition, to 
a set of all permutations obtained by one swapping of any two 
nodes in the permutation corresponding to the current state. The 
algorithm stops when there is no next state available that is better 
than the current state. As we can see, it is nondeterministic; 
depending on where it starts, even for the same problem, the final 
states may differ. To avoid being stuck in a local minimum after an 
unfortunate run, the usual practice is to perform some number of 
random restarts. 
E. Branch and Bound Approach 
Due to the combinatorial nature of the problem, an exact search 
algorithm would hardly be practical, but we present here one based 
on the branch andbound method for the purpose of comparison. As 
we will see in the experiments, this approach cannot handle 
problems as large as those handled by we will see in the 
experiments, this approach cannot handle problems as large as 
those handled by problems large as those handled by the 
approximate algorithms. Our implementation of the branch and 
bound is to approach for WGMP algorithm. 
The branch and bound[7] in Algorithm generates an initial 
permutation for the mapping using a fast approximate algorithm. It 
then constructs a permutation tree using the initial mapping as the 
seed. It traverses the tree in depth first order while improving the 
distance bound. If the current prefix produces a distance worse 
than the current bound, it branches to the next sibling without 
exploring the sub tree. When it reaches to the leaf it computes the 
distance with the current permutation. If it is better than the current 
bound, it updates the bound and backtracks to the next available 
permutation. So far, we have investigated algorithms for 
WGMP[2]. These algorithms take as input two dependency graphs 
generated in the first step and find the mapping between them. 
Among the three mathematical optimization algorithms, the ED 
approach is the fastest. It runs asymptotically in the order of n3, 
where n is the number of nodes in an input graph. The other two 
algorithms, LP and convex QP approaches, run asymptotically in 
the order of n6 for the same n. The branch and bound is obviously 
the slowest as it performs the exact search. Lastly, the HC 
algorithm is a heuristic interactive improvement algorithm, and its 
running time largely depends on the number of restarts, seed 
selection. 

IV. EXPERIMENTS 
In this section, we present the results of schema-matching 
experiments using our proposed approach. 
The validation is performed in two steps. In the first step, we 
attempt to address the first question (in Section II) asking if the 
proposed schema-matching framework works given the 
assumption that we have a perfect graph-matching algorithm. 
A. Injective Mapping 
In this experiment, we kept the target schema size constant at 22 
attributes while increasing the source schema size from 2 to 20 
attributes. As was the case in the bijective mapping experiments, 
the census data match result is slightly better than that of the lab 
exam data. For example, when the schema size reached 20, census 
data yielded 91 percent precision while lab exam data turned out 
only 80 percent. 
In both data sets, mutual information matching outperformed 
entropy-only matching. The precision of lab exam data matching 

was improved approximately 31 percent (from 61 percent in 
entropy only to 80 percent with mutual information), while 
precision in census data improved 12 percent (from 81 percent in 
entropy only to 91 percent for mutual information). We see that 
mutual information was more helpful for the lab exam data than it 
was for the census data. This is because in the lab exam data, more 
attributes had similar entropy, so that entropy-only mapping was 
more likely to get “confused.” Turning now to compare our two 
metrics, euclidean and normal, the euclidean distance[9] metric 
yielded better results overall in both data sets. To summarize the 
situation up to this point, we have considered the performance of 
two matching methods and two distance metrics, and the results 
have been consistent with those in the bijective mapping case. 
However, there is a notable difference: the precision of matching 
in the injective case improves as the size of source schema 
increases, which is the opposite of what we saw in the bijective 
mapping. 
B. Data Set 
We used real-world data sets from two different data domains: 
medical data[6] and census data[8]. The medical data set we used 
in our experiments contains patients’ lab exam results for 
diagnosing thrombosis shows the measured entropies of 30 
randomly chosen attributes of the thrombosis lab exam data, and it 
also shows a fragment of the first 10 (out of the 30) attributes’ data 
values. The original table contains 12 years worth of patient exam 
records, which is approximately 50,000 tuples, and each tuple 
consists of 44 attributes representing test types. The column data 
types are mostly numeric, and a significant portion of the table is 
left blank. Our basic experimental technique with the medical data 
set was to range partition the original table into two sub tables 
based on exam dates and to use these two sub tables for 
experiments. Obviously, we “knew” the correct answer for the 
mapping, but the mapping algorithm did not. For our second data 
set, we used census data. Attribute entropies and a table fragment 
from the census data set, respectively. We used two state census 
data files, CA and NY, in our experiments, each table consists of 
240 attributes. We ran the experiments over a randomly chosen set 
of 30 attributes.  
C.Approximate Matching Algorithms for Schema Matching 
In this section, we try to address the second question asking if 
there is an efficient algorithm for matching that works for our 
problem context. We present the experimental results for valuating 
the algorithms introduced in Section 3. We examined the five 
algorithms: 

1. Umeyama’s ED approach, 
2. the LP approach, 
3. the convex QP approach, 
4. the HC approach, and finally, 
5. the branch and bound algorithm. 

For HC, we used five iterations, each from a randomly chosen 
starting point, and chose the best result from the five trials. The 
computational complexity of an algorithm is another important 
factor to consider when we choose an algorithm. An exact search 
algorithm such as branch and bound would obviously be the best 
in terms of the accuracy but it could be too slow for some of the 
large problems. 

V. CONCLUSION AND FUTURE ENHANCEMENTS 
We have proposed a two-step schema-matching technique that 
works even in the presence of opaque column names and data 
values. In the first step, we measure the pairwise attribute 
correlations in the tables to be matched and construct dependency 
graph using mutual information as a measure of the dependency 
between attributes. In the second stage, we find matching node 
pairs across the dependency graphs byrunninga graph-matching 
algorithm[10]. To our knowledge, our work is the first to introduce 
an uninterrupted matching technique utilizing interattri-bute 
dependency relations. We have shown that while a single column 
uninterrupted matching such as entropy-only matching can be 
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somewhat effective alone, further improvement was possible by 
exploiting interattribute correlations. In this work, we also 
investigated approximation algorithms for the matching problem 
and showed that an efficient implementation can be possible for 
our approach. Among the algorithms we evaluated, the HC 
approach showed the most promising results. It found close to 
optimal solutions very quickly, suggesting that the graph-matching 
problems arising in our schema-matching domain are amenable to 
HC[12]. 
A good deal of room for future work exists. In our work, we have 
only tested two simple distance metrics— Euclidean and normal. 
It is possible that more sophisticated distance metrics could 
produce better results. It would also be interesting to evaluate 
other dependency models using different uninterrupted methods. 
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