
Journal of Computer Applications, Vol – 1, No.4, Oct – Dec 2008 Page 34

RELIABILITY ASSESSMENT OF COMPONENT BASED SOFTWARE
SYSTEMS USING TEST SUITE - A REVIEW

R.Chinnaiyan
Research Scholar,
Department. of Mathematics,
Coimbatore Institute of Technology
Assistant Professor,
Department of Computer Applications,
AVC College of Engineering

Dr.S.Somasundaram
Assistant Professor, Department. of
Mathematics,
Coimbatore Institute of Technology

Abstract

Software reliability has become one of the
main issues for software developers. Aggregating
components into software is a perfect approach to
construct software with the maturity of component
market. How to analyze software reliability from the
reliabilities of its components and architecture should
be answered. However, software in most of the
proposed reliability analysis methods is static, while
software development is a dynamic process,
especially for component-based software, where
pervasive process is iterative and incremental. Based
on functional abstractions, this paper presents a
general model for estimating the reliability of
Component Based Software Systems using Role’s of
Components with Test Suite

Keywords: Software Reliability, Components,
Component Based Software, Test Suite

I Introduction

IEEE 610.12-1990 defines reliability as “The
ability of a system or component to perform its
required functions under stated conditions for a
specified period of time.” IEEE 982.1-1988 defines
Software Reliability Management as “The process of
optimizing the reliability of software through a
program that emphasizes software error prevention,
fault detection and removal, and the use of
measurements to maximize reliability in light of
project constraints such as resources, schedule and
performance.” Software reliability is often defined
as the probability of failure-free software operation
for a specified period of time in a specified
environment. Over the past 30 years, many software
reliability growth models (SRGM) have been
proposed for estimation of reliability growth of
products during software development processes.
Using these definitions, software reliability is
comprised of three activities:
1. Error prevention
2. Fault detection and removal
3. Measurements to maximize reliability,

specifically measures that support the first two
Activities

 Successful modeling has been done to predict
error rates reliability.

 These activities address the first and third
aspects of reliability, identifying and removing faults
so that the software works as expected with the
specified reliability. These measurements have been
successfully applied to software as well as hardware.

II Background
 Several reliability models and estimation
techniques have been proposed to assess the
reliability of component-based applications. Gokhale
et al. [3] discuss the flexibility offered by discrete-
event simulation to analyze component-based
applications. Their approach relies on random
generation of faults in components using a
programmatic procedure which returns the inter-
failure arrival time of a given component. The total
number of failures is calculated for the application
under simulation, and its reliability is estimated. This
approach assumes the existence of a control flow
graph of a program. The simulation approach
assumes failure and repair rates for components, and
uses them to generate failures in executing the
application. It also assumes constant execution time
per component interaction, and ignores failures in
component interfaces and links (transition
reliabilities). Sanyal et al. [9] introduce Program
Dependency Graphs and Fault Propagation Analysis
[11], [12] for analytical reliability estimation of
component based-applications. The approach is code-
based (reverse-engineering) where dependency
graphs are generated from source code, which may
not be available for off-the-shelf components.
Krishnamurthy et al. [5] assess the reliability of
component- based applications using a technique
called Component Based Reliability Estimation
(CBRE). The approach is based on test information
and test cases. For each test case, the execution path
is identified. The path reliability is calculated using
the reliability of the components assuming a series
connection. This approach does not consider
component interface faults, although they are
considerable factors in reliability analysis of
component-based software. This paper presents a
general model for estimating the reliability of
Component Based Software Systems using Role’s of
Components with Test Suite

Journal of Computer Applications, Vol – 1, No.4, Oct – Dec 2008 Page 35

III Proposed Model
The Component Based Software Systems

Reliability measurement method (CBSSysRel) is a
technique for making empirical measurements of the
reliability of a software component. The technique
does not necessarily require access to, or knowledge
of, the source code; however, the purpose of
CBSSysRel is to aid the component developer in
providing information to potential acquirers of the
component. We assume the public specification of
the component, as exposed through the interfaces, i.e.
ports, that it implements, identifies the various roles
with which the component is intended to be
compatible. Each role is implemented by a group of
methods. CBSSysRel uses “role” as the unit for
which reliability measurements are made. The
definition of each role is used to create an operational
profile. The role’s operational profile is then used to
create a set of test cases that are used to measure the
reliability.

IV Probability for Successful Execution

The probability of successful execution is
measured by repeatedly operating a system according
to the selected operational profile, i.e. selecting
inputs according to the frequency constraints of the
profile, for the specified unit of time. The reliability
is computed by measuring the percentage of those
executions that terminate successfully. For a system a
reliability value is reported for each operational
profile. If certain critical or heavily used profiles
correspond to lower than acceptable reliability
values, the system may be modified to improve those
values. For a component that will be used in a variety
of contexts, a large number of reliability values
should be reported so that the architect can compute
the effective reliability that will be observed in a
particular system. For example, a component is
provided that plays a role in each of five protocols.
The reliability portion of a component datasheet
contains the role reliabilities and abbreviated role
descriptions as depicted in Figure 1.

Role Role Description Reliability

A Provides Basic Computation 0.90
B Provides Graphing 0.91
C Provides Database Access 0.92
D Provides Security 0.93
E Provides Transaction 0.94

Figure 1: Example role reliability description

 The effective reliability of the component in a
particular deployment is the reliability that the
architect will experience with a specific component
used in a specific manner. It is computed by
multiplying the relative frequency for a role, as
anticipated by the architect, and the measured
reliability of the component in that role. These
combined values are summed to give the effective
reliability of the component. Suppose the architect

intends to use the first, third, and fifth roles with
equal frequency. The architect’s reliability analysis
worksheet includes a computation that looks
something like Figure 2 for each component defined
in the architecture.

Role Reliability Relative
Frequency Contribution

A 0.90 0.333 0.30
B 0.91 0.0 0.0
C 0.92 0.333 0.31
D 0.93 0 0.0
E 0.94 0.333 0.31

Component Reliability 0.92
Figure 2: Example reliability analysis worksheet

 This value is then fed into the reliability
analysis for the system, which uses the topology of
the components in the architecture to compute
estimated system reliability.

V CBSSysRel Process
 CBSSysRel measures and communicates
reliability values for a component. In this section we
present a detailed outline for applying CBSSysRel
given a component and its documentation.

5.1 CBSSysRel Process
Step 1 : Create a structure for measurements
Step 2 : Identify the Roles of Components in the

Software System
Step 3 : Create an operational profile for each role.
Step 4 : Build a reliability test suite for each role.
Step 5 : Apply each test suite in an appropriate

Environment
Step 6 : Evaluate the results
Step 7 : Extend the test suite

Step 1: Create a structure for measurements
 Establish the confidence level you wish to
have in the accuracy of the reliability value. The
typical value is 95% or higher. Note, this is not a
reliability target. It is an expression of how certain
we wish to be that the measured value, whatever it is,
is reported accurately. We need to be very certain of
the accuracy of the reliability of the client since it is a
part of the infrastructure upon which other
applications depend. We will choose a confidence
level of 99%. The reliability value will be reported as
an interval of values. This confidence interval is
sufficiently large that we have the specified level of
confidence, e.g. 99%, that the real reliability value is
within the reported interval. Since the component
acquirer will not care if the actual reliability is greater
than believed, a one-tailed confidence interval is
used.

Journal of Computer Applications, Vol – 1, No.4, Oct – Dec 2008 Page 36

Step 2: Identify the Roles of Components in the
Software System
 This identification comes from the
documentation of the component. The designer may
have listed the roles and identified the services that
participate in those roles. The reliability test plan
identifies each of the roles and for each role the
services that implement the role. A review of the
protocol definition identifies the state machine
described earlier.
Step 3: Create an operational profile for each role.
 The profile describes the relative frequency
with which each service is used. The reliability test
plan defines how often the test suite should invoke
each service of the role. Each test case will be one
complete cycle of the role. In that cycle some of the
services may be invoked multiple times. For cases
such as a transaction manager where some methods
may be called an indefinite number of times, this
becomes a quantity to vary from one run to another.
A single test case for client includes establishing the
connection, authenticating to the server and then
applying one or more services such as telnet or ftp.
From one run to another a test case could be varied
by connecting to different servers and manipulating
different types of files.
Step 4: Build a reliability test suite for each role.
 For each role, a test script is created that obeys
the constraints of the role. The constraints usually
include the state transitions that are possible. Other
constraints include the types for the parameters on
each service. We assume no access to the source code
so the analysis is limited to the public interface
documented in the role description.
 An analysis of each parameter type in the role
description leads to a set of partitions of values from
the type. Each partition contains values for which we
believe the component will behave the same. The
test suite includes test cases that (1) test each possible
ordering of service invocations and that (2)
adequately sample over the parameter partitions for
each service. These two conditions provide a means
of measuring how completely the test suite covers the
component roles. If the initial test suite is not
sufficient to achieve a reliability measure in which
we have sufficient confidence, the test designer
searches for additional orderings of invocations or for
parameter values that are likely to exercise new
sections of the component. The most likely source of
new test cases is unique combinations of parameter
values. A thorough analysis of the client and the
protocol indicates that, since the client runs on top of
standard TCP implementations, the test cases do not
need to cover multiple platforms. Also the number of
orderings of invocations is very limited since
establishing the transport layer followed by
authentication must occur in that order. The mixture
of service invocations after the connection is
established is the main source of variation among test
cases.

Step 5: Apply each test suite in an appropriate
environment
 A test case will cover a complete cycle of the
protocol. For example, if the protocol is a transaction,
a test case would extend from transaction start to
transaction commit or transaction rollback. A test run
will be one complete execution of all the test cases in
the test suite. Multiple test runs will be conducted
where one run differs from another by varying input
parameters. A reliability value is computed at the end
of each test run. The confidence in this value is
computed. The cycle of test runs terminates when an
acceptable confidence interval is computed.
Step 6: Evaluate the results
 Each test case is evaluated and marked as
either passed or failed. Each failure case is evaluated
to determine whether the environment produced the
failure or whether the component is responsible. The
reliability computation uses the number of success
and the number of failures to compute the reliability.
Step 7: Extend the test suite
 Once the analysis is completed, if the level of
confidence has not been reached, additional test cases
may be created and executed. The coverage criteria
provide direction on how to effectively expand the
test suite to cover additional ground.

VI Conclusion

This work is exploring how to provide useful
information about reliability to acquirers of
components. Rather than provide a single value for
the entire component, we provide reliability
information about each role that the component is
intended to support. The acquirer can then compute
the effective reliability they would experience given
their intended use of the component. The intention is
to provide accurate information about reliability in
support of component commerce and prediction of
assembly reliability.

VII References

[1] Allen, Robert and David Garlan. A Formal Basis
for Architectural Connection, ACM Transactions
on Software Engineering and Methodology,
1997.

[2] Cho, Il-Hyung and McGregor, John
D.“Component Specification and Testing
Interoperation of Components”, IASTED 3rd
International Conference on Software
Engineering and Applications, Oct.1999.

[3] S. Gokhale et al., “Reliability simulation of
component-based software systems,” in Proc. 9th
Int. Symp. Software Reliability Engineering
(ISSRE’98), Paderborn, Germany, Nov. 1998,
pp. 192–201.

[4] Hissam, Scott, Gabriel A. Moreno, Judith
Staffod, Kurt C. Wallnau. “Packaging
Predictable Assembly with Prediction- Enabled
Component Technology,” Carnegie Mellon

Journal of Computer Applications, Vol – 1, No.4, Oct – Dec 2008 Page 37

University Software Engineering Institute,
CMU/SEI-2001-TR-024, 2001.

[5] S.Krishnamurthy and A. P. Mathur, “On the
estimation of reliability of a software system
using reliabilities of its components,” in Proc.
8th Int. Symp. Software Reliability Engineering
(ISSRE’97), Albuquerque, New Mexico, Nov.
1997, pp. 146–155.

[6] Mason, D. “Probabilistic Analysis for
Component Reliability Composition,”
Proceedings of the 5th ICSE Workshop on
Component-Based Software Engineering,
Orlando, Florida, May 2002).

[7] Musa, John. Software Reliability Engineering,
New York, NY, McGraw-Hill, 1998.

[8] “Perameterized Contracts for Adapter
Synthesis,” Heinz W. Schmidt and Ralf
Reussner, Proceedings of the 5th ICSE Workshop
on Component-Based Software Engineering,
Orlando, Florida, May 2002.

[9] S. Sanyal et al., “Framework of a software
reliability engineering tool,” in Proc. IEEE High-
Assurance Systems Engineering Workshop
(HASE’97), Washington, DC, 1997, pp. 114–
119.

[10] Selic, Bran and Jim Rumbaugh. Using UML for
Modeling Complex Real-Time Systems,
Rational Corp., 1998.

[11] Shah and S. Bhattacharya, “Fault propagation
analysis based variable length checkpoint
placement for fault tolerant parallel and
distributed system,” in Proc. 21st Annu. Int.
Computer Software and Applications Conf.
(COMPSAC’97), Bethesda, Maryland, Aug.
1997.

[12] J. Voas, “Error propagation analysis for COTS
systems,” IEEE Comput.Control Eng. J., vol. 8,
no. 6, pp. 269–272, Dec. 1997.

[13] Stafford, Judith A. and McGregor, John D.,
“Issues in Predicting the Reliability of
Components,” Proceedings of the 5th ICSE
Workshop on Component-Based Software
Engineering, Orlando, Florida, May 2002.

[14] Szyperski, Clemens. Component Software:
Beyond Object-Oriented Programming,
Addison-Wesley, 1998.

AUTHOR’S BIOGRAPHY

R.Chinnaiyan is working as an
Assistant Professor in the department of
Computer Applications, A.V.C College
of Engineering, Mannampandal,
Mayiladuthurai. He is having 8 years of
teaching experience. He is a life
member of ISTE, CSI of INDIA. He is
now doing his research in Anna
University at Coimbatore Institute of
Technology, Coimbatore. His research
interest includes Software Reliability,
Qos and Object Oriented Analysis and
Design.

Dr.S.Somasundaram is working as an
Assistant Professor in the department of
Mathematics, Coimbatore Institute of
Technology, Coimbatore. He is having
19 years of teaching experience. He had
guided over 10 M.Phil Candidates in
Bharathiyar, Bharathidasan and
Annamalai Universities. Now he is
guiding 5 Research Scholars under
Anna University Chennai and
Coimbatore, His research interest
includes Reliability Engineering,
Software Reliability, QoS and
Networking.

