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Abstract : 

Software is an integral part of many 
critical and non-critical applications, and virtually 
any industry is dependent on computers for their 
basic functioning. Techniques to measure and 
ensure reliability of hardware have seen rapid 
advances, leaving Software as the bottleneck in 
achieving overall system reliability. Hence there 
rises a situation for the developers to develop high 
quality software. Having that in mind it is 
necessary to provide the reliability of the software 
to the developers before it is shipped. This can be 
achieved based on immune system. The immune 
system that is otherwise known as ‘second brain’ 
for its abilities to recognize new intruders and 
remember past occurrences. Simulating the 
immune system or translating immune system 
mechanisms into software learning is an interesting 
topic on its own.  This will produce high quality, 
reliable results over a wide variety of problems 
compared to a range of other approaches, without 
the need of expert fine-tuning. 

Index Terms - Artificial Recognition Balls, 
Artificial Immune Recognition System, Operating 
systems, software reliability growth models, 
Software Failure Rate. 
 
Introduction: 

The natural immune system is a powerful 
and robust information processing system that 
demonstrates several distinguishing features, such 
as distributed control, parallel processing, and 
adaptation/learning via experiences. Artificial 
Immune Systems (AIS) are emerging machine 
learning algorithms, which embody some of the 
principles of the natural immune system for 
tackling complex engineering problems [18]. The 
Artificial Immune Recognition System (AIRS), is a 
new supervised learning AIS. It has shown 
significant success in dealing with demanding 
classification tasks [19]. 

 Software quality management is an 
important aspect of software project development. 
The Capability Maturity Model (CMM) is the de 
facto standard for rating how effective an 
organization’s software development process is 
[20]. This model defines five levels of software 
process maturity: initial, repeatable, defined, 
managed, and optimization. The initial level 
presents the organizations with no project 
management system. The managed level describes 
the organizations, which collect information of 
software quality and development process, and use 
that information for process improvement. Finally, 

the optimization level describes those organizations 
that continually measure and improve their 
development process, while simultaneously explores 
the process innovations. 

 The software quality management is also an 
ongoing comparison of the actual quality of a product 
with its expected quality. Software metrics are the 
key tools in the software quality management, since 
they are essential indicators of software quality, such 
as, reliability, maintenance effort, and development 
cost. Many researchers have analyzed the 
connections between software metrics and code 
quality [21, 22]. The methods they use fall into the 
following main categories : association analysis, 
clustering analysis, classification and regression 
analysis . 

 In this paper, we propose an AIRS for the 
software quality classification. We also compare this 
method with other well-known classification 
techniques. In addition, we investigate the 
employment of the Gain Ratio (GR) for selecting 
relevant software metrics in order to improve the 
performance of the AIRS-based classifiers. 
 The remainder of this paper is organized as 
follows. Section 2 briefly introduces the software 
metrics and MDP benchmark dataset. Section 3 
presents our AIRS based software quality 
classification method. Section 4 describes two 
baseline classification algorithms for comparison. 
Section 5 discusses the metrics selection with the 
Gain Ratio. Simulation results are demonstrated in 
Section 6. Finally, some remarks and conclusions are 
drawn in Section 7. 
 
Software Metrics: 

In this paper, we investigate totally 38 
software metrics. Simple counting metrics, such as 
the number of lines of source codes or Halstead’s 
number of operators and operands, describe how 
many “things” there are in a program. However, 
more complex metrics, e.g., McCabe’s cyclomatic 
complexity or Bandwidth, attempt to describe the 
“complexity” of a program by measuring the number 
of decisions in a module or the average level of 
nesting in the module. These metrics are used in the 
NASA Metrics Data Program (MDP) benchmark 
dataset MW1 [23]. Refer to Table 1 for a more 
detailed description of the metrics. There are 403 
modules in this dataset. 
 Our goal is to develop a prediction model of 
software quality, in which the number of defects 
associated with a module is projected on the basis of 
the values of the 37 software metrics characterizing a 
software module. We cast this problem in the setting 
of classification, and in each module, the explanatory 
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variables are the first 37 software metrics, and the 
prediction variable is the defects. Software modules 
with no defects are in the class of fault-none, while 
those with more than one defect are in the class of 
fault-prone. Table 1. Description of NASA MDP 
MW1 project dataset with characterization of 
software metrics [24]. 

 

 

 

 
 
Definition of AIRS: 
 The Artificial Immune Recognition System 
is a new method for data mining [25,26] People 
used to believe that "software never breaks". 
Intuitively, unlike mechanical parts such as bolts, 
levers, or electronic parts such as transistors, 
capacitor, software will stay "as is" unless there are 
problems in hardware that changes the storage 
content or data path. Software does not age, rust, 
wear-out, deform or crack. There is no environmental 
constraint for software to operate as long as the 
hardware processor it runs on can operate. 
Furthermore, software has no shape, color, material, 
mass. It can not be seen or touched, but it has a 
physical existence and is crucial to system 
functionality.  

The presence of known vulnerabilities can 
represent an extremely high risk for some 
organizations such as banks, investment & brokerage 
houses, and web-based merchants. The software 
developers, and users need to be able to assess the 
risk posed by the vulnerabilities, and must invest in 
effective counter-measures. The risk increases with 
the delay in developing, and releasing a patch [1,2] A 
developer needs to allocate sufficient resources for 
continuous vulnerability testing, and patch 
development to stay ahead of the hackers. The users 
need to invest in data safeguard mechanisms, 
intrusion detection, and damage control. This 
investment must be proportional to the level of risk 
involved. Software reliability growth models [3,4] 
have been used for characterizing the defect-finding 
process for ordinary defects. Such models are used to 
assess the test resources needed to achieve the 
desired reliability level by the target date, and are 
needed for evaluating the reliability level achieved. 
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They can also be used to estimate the number of 
residual defects that are likely to be present. There 
is a need to develop similar models for quantitative 
characterization of the security aspects of the 
software. There are two separate processes to be 
considered: the first is the vulnerability discovery 
process, while the second is the exploitation of the 
individual vulnerabilities discovered. In this paper, 
we examine modeling the first process. An 
evaluation of the overall risk should involve a joint 
consideration of both processes. Obviously, 
vulnerability needs to be discovered before it can 
be exploited. Those who attempt to exploit 
vulnerabilities can often be amateurs because they 
can use the hacking scripts available on the 
Internet, which are developed after vulnerability 
has been reported. On the other hand, those who 
discover new vulnerabilities must have significant 
technical expertise, because the vulnerabilities 
often arise as the result of complex interactions of 
rarely occurring state combinations in the software. 
 According to ANSI, Software Reliability 
is defined as: the probability of failure-free 
software operation for a specified period of time in 
a specified environment. Although Software 
Reliability is defined as a probabilistic function, 
and comes with the notion of time, we must note 
that, different from traditional Hardware 
Reliability, Software Reliability is not a direct 
function of time. Electronic and mechanical parts 
may become "old" and wear out with time and 
usage, but software will not rust or wear-out during 
its life cycle. Software will not change over time 
unless intentionally changed or upgraded. 
 Software Reliability is an important to 
attribute of software quality, together with 
functionality, usability, performance, serviceability, 
capability, install ability, maintainability, and 
documentation. Software Reliability is hard to 
achieve, because the complexity of software tends 
to be high. While any system with a high degree of 
complexity, including software, will be hard to 
reach a certain level of reliability, system 
developers tend to push complexity into the 
software layer, with the rapid growth of system size 
and ease of doing so by upgrading the software. 
 
Modeling with AIRS: 
 Once the detailed reliability models are 
complete, the reliability analyst must further 
decompose those system elements containing AIRS.  
For the purposes of reliability modeling, software 
includes AIRS, which is configurable or under 
configuration control. 
 
A. Modeling series: 
 Failure rates for operating systems or 
executives, if available, can be obtained from the 
supplier of the operating system or executive. 
Failure rates obtained from the operating system 

supplier are usually quoted in the number of outages 
caused over some period of time (e.g., a year).  
Failure rates for operating systems are generally 
quoted with respect to system operating time because 
the operating system is active at all times when the 
computer is powered and ready for processing.  The 
reliability analyst will need to convert the failure rate 
given to failures per hour for compatibility with 
hardware failure rates. 
B. Flow Diagram: 
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AIRS Algorithm: 
I  Initialization: 
 Collection of data to normalized with the 
required system. 
II Filtering: 
 Filtering is nothing but the collected data 
wanted to be segregated by there respective cell 
allocation i.e. the set of processed data is called 
information. This information is reliable for our 
system. 
III Definition of AIRS: 
 The Artificial Immune Recognition 
System (AIRS) is a new method for data mining 
[10,11].In this section we explore the application of 
the AIRS for software quality classification. We 
first prepare a pool or recognition or memory cells 
(data exemplars) which are the representatives of 
the training software modules the model is exposed 
to. The lifecycle of the AIRS is illustrated in Fig.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 

IV Classification: 
 The normalized regular formation of data 

is going to classify with the required AIRS with 
different groups of data. 
V  Software Failure Rate (SFR): 
 Determining software failure rates for use in 
combined hardware/software models requires that the 
software being analyzed be treated as a subsystem. A 
software subsystem, like hardware, can be viewed as 
a hierarchy. As far as reliability is concerned, 
however, the hierarchy consists of functions or 
operations rather than components.  The software 
functions that comprise a system will be related to 
one another in two ways: a particular timing 
configuration and a particular reliability topology. 
 Timing configuration is a concern when the 
various functions are active and inactive during a 
period of interest.  Topology concerns the number of 
functions in the system that can fail before the system 
fails. 

 SFR is measured by using following method 
based on mathematical technique. 
 Consider q level data, it contains the data 
with some failure (or) incorrect form 
i.e.     Dq = CDq-1+EDq-1 
Where Dq = Data in q level 
 CDq-1 = Correct data in q-1 level 

 EDq-1 = Error data in q-1 level 
Where D q+1=Dq-EDq-1 

This will give corrected data in q level 
process. This is known as recurrence formula. 

 
Conclusion: 
 In this paper we discussed only ground level 
net work of Software Failure Rate (SFR) for the 
Artificial Immune Recognition System (AIRS) with 
mathematical formula. In future definitely this 
method will help us to do further steps in different 
mathematical technique. 
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