
Journal of Computer Applications, Vol – 1, No.4, Oct – Dec 2008 Page 1

FINDING FAULTS OF SOFTWARE METRICS FOR AN ARTIFICIAL
IMMUNE RECOGNITION SYSTEM

S.Chitra 1 , K.Thiagarajan 2, Dr.M.Rajaram 3

Abstract :

Software is an integral part of many
critical and non-critical applications, and virtually
any industry is dependent on computers for their
basic functioning. Techniques to measure and
ensure reliability of hardware have seen rapid
advances, leaving Software as the bottleneck in
achieving overall system reliability. Hence there
rises a situation for the developers to develop high
quality software. Having that in mind it is
necessary to provide the reliability of the software
to the developers before it is shipped. This can be
achieved based on immune system. The immune
system that is otherwise known as ‘second brain’
for its abilities to recognize new intruders and
remember past occurrences. Simulating the
immune system or translating immune system
mechanisms into software learning is an interesting
topic on its own. This will produce high quality,
reliable results over a wide variety of problems
compared to a range of other approaches, without
the need of expert fine-tuning.

Index Terms - Artificial Recognition Balls,
Artificial Immune Recognition System, Operating
systems, software reliability growth models,
Software Failure Rate.

Introduction:

The natural immune system is a powerful
and robust information processing system that
demonstrates several distinguishing features, such
as distributed control, parallel processing, and
adaptation/learning via experiences. Artificial
Immune Systems (AIS) are emerging machine
learning algorithms, which embody some of the
principles of the natural immune system for
tackling complex engineering problems [18]. The
Artificial Immune Recognition System (AIRS), is a
new supervised learning AIS. It has shown
significant success in dealing with demanding
classification tasks [19].

 Software quality management is an
important aspect of software project development.
The Capability Maturity Model (CMM) is the de
facto standard for rating how effective an
organization’s software development process is
[20]. This model defines five levels of software
process maturity: initial, repeatable, defined,
managed, and optimization. The initial level
presents the organizations with no project
management system. The managed level describes
the organizations, which collect information of
software quality and development process, and use
that information for process improvement. Finally,

the optimization level describes those organizations
that continually measure and improve their
development process, while simultaneously explores
the process innovations.

 The software quality management is also an
ongoing comparison of the actual quality of a product
with its expected quality. Software metrics are the
key tools in the software quality management, since
they are essential indicators of software quality, such
as, reliability, maintenance effort, and development
cost. Many researchers have analyzed the
connections between software metrics and code
quality [21, 22]. The methods they use fall into the
following main categories : association analysis,
clustering analysis, classification and regression
analysis .

 In this paper, we propose an AIRS for the
software quality classification. We also compare this
method with other well-known classification
techniques. In addition, we investigate the
employment of the Gain Ratio (GR) for selecting
relevant software metrics in order to improve the
performance of the AIRS-based classifiers.
 The remainder of this paper is organized as
follows. Section 2 briefly introduces the software
metrics and MDP benchmark dataset. Section 3
presents our AIRS based software quality
classification method. Section 4 describes two
baseline classification algorithms for comparison.
Section 5 discusses the metrics selection with the
Gain Ratio. Simulation results are demonstrated in
Section 6. Finally, some remarks and conclusions are
drawn in Section 7.

Software Metrics:

In this paper, we investigate totally 38
software metrics. Simple counting metrics, such as
the number of lines of source codes or Halstead’s
number of operators and operands, describe how
many “things” there are in a program. However,
more complex metrics, e.g., McCabe’s cyclomatic
complexity or Bandwidth, attempt to describe the
“complexity” of a program by measuring the number
of decisions in a module or the average level of
nesting in the module. These metrics are used in the
NASA Metrics Data Program (MDP) benchmark
dataset MW1 [23]. Refer to Table 1 for a more
detailed description of the metrics. There are 403
modules in this dataset.
 Our goal is to develop a prediction model of
software quality, in which the number of defects
associated with a module is projected on the basis of
the values of the 37 software metrics characterizing a
software module. We cast this problem in the setting
of classification, and in each module, the explanatory

Journal of Computer Applications, Vol – 1, No.4, Oct – Dec 2008 Page 2

variables are the first 37 software metrics, and the
prediction variable is the defects. Software modules
with no defects are in the class of fault-none, while
those with more than one defect are in the class of
fault-prone. Table 1. Description of NASA MDP
MW1 project dataset with characterization of
software metrics [24].

Definition of AIRS:
 The Artificial Immune Recognition System
is a new method for data mining [25,26] People
used to believe that "software never breaks".
Intuitively, unlike mechanical parts such as bolts,
levers, or electronic parts such as transistors,
capacitor, software will stay "as is" unless there are
problems in hardware that changes the storage
content or data path. Software does not age, rust,
wear-out, deform or crack. There is no environmental
constraint for software to operate as long as the
hardware processor it runs on can operate.
Furthermore, software has no shape, color, material,
mass. It can not be seen or touched, but it has a
physical existence and is crucial to system
functionality.

The presence of known vulnerabilities can
represent an extremely high risk for some
organizations such as banks, investment & brokerage
houses, and web-based merchants. The software
developers, and users need to be able to assess the
risk posed by the vulnerabilities, and must invest in
effective counter-measures. The risk increases with
the delay in developing, and releasing a patch [1,2] A
developer needs to allocate sufficient resources for
continuous vulnerability testing, and patch
development to stay ahead of the hackers. The users
need to invest in data safeguard mechanisms,
intrusion detection, and damage control. This
investment must be proportional to the level of risk
involved. Software reliability growth models [3,4]
have been used for characterizing the defect-finding
process for ordinary defects. Such models are used to
assess the test resources needed to achieve the
desired reliability level by the target date, and are
needed for evaluating the reliability level achieved.

Journal of Computer Applications, Vol – 1, No.4, Oct – Dec 2008 Page 3

They can also be used to estimate the number of
residual defects that are likely to be present. There
is a need to develop similar models for quantitative
characterization of the security aspects of the
software. There are two separate processes to be
considered: the first is the vulnerability discovery
process, while the second is the exploitation of the
individual vulnerabilities discovered. In this paper,
we examine modeling the first process. An
evaluation of the overall risk should involve a joint
consideration of both processes. Obviously,
vulnerability needs to be discovered before it can
be exploited. Those who attempt to exploit
vulnerabilities can often be amateurs because they
can use the hacking scripts available on the
Internet, which are developed after vulnerability
has been reported. On the other hand, those who
discover new vulnerabilities must have significant
technical expertise, because the vulnerabilities
often arise as the result of complex interactions of
rarely occurring state combinations in the software.
 According to ANSI, Software Reliability
is defined as: the probability of failure-free
software operation for a specified period of time in
a specified environment. Although Software
Reliability is defined as a probabilistic function,
and comes with the notion of time, we must note
that, different from traditional Hardware
Reliability, Software Reliability is not a direct
function of time. Electronic and mechanical parts
may become "old" and wear out with time and
usage, but software will not rust or wear-out during
its life cycle. Software will not change over time
unless intentionally changed or upgraded.
 Software Reliability is an important to
attribute of software quality, together with
functionality, usability, performance, serviceability,
capability, install ability, maintainability, and
documentation. Software Reliability is hard to
achieve, because the complexity of software tends
to be high. While any system with a high degree of
complexity, including software, will be hard to
reach a certain level of reliability, system
developers tend to push complexity into the
software layer, with the rapid growth of system size
and ease of doing so by upgrading the software.

Modeling with AIRS:
 Once the detailed reliability models are
complete, the reliability analyst must further
decompose those system elements containing AIRS.
For the purposes of reliability modeling, software
includes AIRS, which is configurable or under
configuration control.

A. Modeling series:
 Failure rates for operating systems or
executives, if available, can be obtained from the
supplier of the operating system or executive.
Failure rates obtained from the operating system

supplier are usually quoted in the number of outages
caused over some period of time (e.g., a year).
Failure rates for operating systems are generally
quoted with respect to system operating time because
the operating system is active at all times when the
computer is powered and ready for processing. The
reliability analyst will need to convert the failure rate
given to failures per hour for compatibility with
hardware failure rates.
B. Flow Diagram:

Fig.1

Start

Collection of
Data (Correct
Data + Error

Data)

Filtering data
AIR 1

AIR 2

AIR 3

Formatting
Data

Regular Data 1

Regular Data 2

Regular Data 3

System
Running

Debugging of
data

Bugging of data

Corrected data Testing AIRS

Journal of Computer Applications, Vol – 1, No.4, Oct – Dec 2008 Page 4

AIRS Algorithm:
I Initialization:
 Collection of data to normalized with the
required system.
II Filtering:
 Filtering is nothing but the collected data
wanted to be segregated by there respective cell
allocation i.e. the set of processed data is called
information. This information is reliable for our
system.
III Definition of AIRS:
 The Artificial Immune Recognition
System (AIRS) is a new method for data mining
[10,11].In this section we explore the application of
the AIRS for software quality classification. We
first prepare a pool or recognition or memory cells
(data exemplars) which are the representatives of
the training software modules the model is exposed
to. The lifecycle of the AIRS is illustrated in Fig.2.

Fig.2

IV Classification:
 The normalized regular formation of data

is going to classify with the required AIRS with
different groups of data.
V Software Failure Rate (SFR):
 Determining software failure rates for use in
combined hardware/software models requires that the
software being analyzed be treated as a subsystem. A
software subsystem, like hardware, can be viewed as
a hierarchy. As far as reliability is concerned,
however, the hierarchy consists of functions or
operations rather than components. The software
functions that comprise a system will be related to
one another in two ways: a particular timing
configuration and a particular reliability topology.
 Timing configuration is a concern when the
various functions are active and inactive during a
period of interest. Topology concerns the number of
functions in the system that can fail before the system
fails.

 SFR is measured by using following method
based on mathematical technique.
 Consider q level data, it contains the data
with some failure (or) incorrect form
i.e. Dq = CDq-1+EDq-1
Where Dq = Data in q level
 CDq-1 = Correct data in q-1 level

 EDq-1 = Error data in q-1 level
Where D q+1=Dq-EDq-1

This will give corrected data in q level
process. This is known as recurrence formula.

Conclusion:
 In this paper we discussed only ground level
net work of Software Failure Rate (SFR) for the
Artificial Immune Recognition System (AIRS) with
mathematical formula. In future definitely this
method will help us to do further steps in different
mathematical technique.

References:
1. S. Beattie, S. Arnold, C. Cowan, P.Wagle, and

C. Wright, “Timing the application of security
patches for optimal uptime,” in Proc. LISA XVI,
November 2002, pp. 233–242.

2. B.Brykczynski and R. A. Small, “Reducing
internet-based intrusions:Effective security patch
management,” IEEE Software, vol. 20, no. ,pp.
50–57, Jan./Feb. 2003.

3. “Handbook of Software Reliability
Engineering,” M. R. Lyu, Ed., Mc-Graw-Hill,
1995.

4. J. D. Musa, Software Reliability Engineering. :
McGraw-Hill, 1999.

5. E. E. Schultz, Jr., D. S. Brown, and T. A.
Longstaff, Responding to Computer Security
Incidents. : Lawrence Livermore National
Laboratory, July 23, 1990 .

6. J. Timmis, M. Neal, and J. Hunt, “An artificial
immune system for data analysis,” Biosystems,
vol. 55, no. 1, pp. 143–150, 2000.

7. M. Neal, “An artificial immune system for
continuous analysis of time-varying data,” in 1st
International Conference on Artificial Immune
Systems, Canterbury, UK, 2002, pp. 76–85.

8. T Knight and J Timmis, “Aine: An
immunological approach to data mining,” in
IEEE International Conference on Data Mining,
San Jose, CA, 2001, pp. 297–304.

9. S. Yacoub, B. Cukic, and H Ammar,
“A Scenario-Based Reliability Analysis
Approach for Component-Based Software,”
IEEE Transactions on Reliability, vol. 53, no. 4,
2004, pp. 465-480.

10. .J.D. Musa, Software Reliability Engineering:
More Reliable Software Faster and Cheaper (2nd
Edition), AuthorHouse, 2004.X.

Classifier
Preparation

Classification

Antigen
Training

Initialization

Memory Cell
Selection

Training on All
Antigens

Competition
for limited
Resources

Journal of Computer Applications, Vol – 1, No.4, Oct – Dec 2008 Page 5

11. Teng, H. Pham, and D. Jeske, “Reliability
Modeling of Hardware and Software
Interactions, and Its Applications,” IEEE
Transactions on Reliability, vol. 55, no. 4,
Dec. 2006, pp. 571-577.

12. Farr, Dr. William, A Survey of Software
Reliability Modeling and Estimation, NSWC TR
82-171, Naval Surface Weapons Center,
Dahlgren, VA, Sept. 1983.

13. Friedman, M.A., Tran, P.Y., and Goddard, P.L.,
Reliability Techniques for Combined Hardware
and Software Systems, Final Report, Contract
F30602-89-C-0111, Rome Laboratory, Air
Force Systems Command, Griffiss Air Force
Base, New York. Sept. 1991.

14. Jones, Capers, Software Productivity Research,
Inc., Applied Software Measurement, McGraw-
Hill, NY, 1995.

15. Keene, Dr. Samuel, Cole, G.F., Reliability
Growth of Fielded Software, Reliability
Review, Vol 14, March 1994.

16. Lyu, Michael R., Handbook of Software
Reliability Engineering, IEEE Computer
Society Press, 1996.

17. a subsyst Musa, J.D., Iannino, A. and Okumoto,
K., Software Reliability: Measurement,
Prediction, Application, McGraw Hill Book
Company, New York, NY. 1987.

18. H. Bersini and F. Varela, “Hints for Adaptive
Problem Solving Gleaned from Immune
Networks,” in Proceedings of the 1st
Workshop on Parallel Problem Solving from
Nature, Dortmund and Federal Republic of
Germany, pp. 343-354 (1990).

19. D. Goodman, L. Boggess, and A. Watkins,
“Artificial Immune System Classification of
Multiple-Class Problems,” in C. H. Dagli, A.
L. Buczak, J. Ghosh, M. J. Embrechts, O.
Ersoy, and S. W. Kercel (eds.), Intelligent
Engineering Systems Through Artificial Neural
Networks, vol. 12, New York, NY, pp. 179-
184 (2002).

20. S. Dick, A. Meeks, M. Last, H. Bunke, and A.
Kandel, “Data Mining in Software Metrics
Databases,” Fuzzy Sets and Systems, 145(1),
pp. 81-110 (2004).

21. D. Garmus and D. Herron, Measuring the
Software Process. Prentice Hall, Upper Saddle
River, NJ (1996).

22. R. Subramanyan and M. S. Krishnan,
“Empirical Analysis of CK Metrics for Object-
Oriented Design Complexity: Implications for
Software Defects,” IEEE Trans. Software
Eng., vol. 29, pp. 297-310, April (2003).

23. K. H. Muller and D. J. Paulish, Software
Metrics, IEEE Press / Chapman & Hall,
London, UK (1993).

24. NASA MDP, http://mdp.ivv.nasa.gov
/index.html (2006).

25. A. Watkins and J. Timmis, “Artificial Immune
Recognition System (AIRS): Revisions and
Refinements,” in Proceedings of the 1st
International Conference on Artificial Immune
Systems, Canterbury, UK, pp. 173-181,
September (2002).

26. A. Watkins, J. Timmis, and L. Boggess,
“Artificial Immune Recognition System (AIRS):
An Immune Inspired Supervised Machine
Learning Algorithm,” Genetic Programming and
Evolvable Machines, 5(1), March (2004).

1 Prof .S.Chitra, is the Head of the Department of
Computer Science and Engineering in M.
Kumarasamy College of Engineering, Karur,
India. She has 15 years experience in active
teaching. She completed her BE and ME in
Computer Science and Engineering and
undergoing her research in the area Software
Reliability . She presented more than 15 papers
including national, international conferences and
journals.

2 Mr.K.Thiagarajan, Lecturer, Department of
Mathematics, Rajalakshmi Engineering College,
Thandalam, Chennai, India. He has attended and
presented 23 papers in national and international
conferences. He has published 13 international
journals, and one National journal. He has 13
years of teaching experience.

3 Dr.M.Rajaram, Professor of the department

Electrical And Electronics Engineering in
Thandhai perriyar government institute of
technology, Vellore, India. He is guiding 12
research scholars and 4 have been awarded
doctorate. He presented more than 100 papers
including national, international journals and has
20 years of experience in teaching.

