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Abstract 
  Current TCP congestion control can be 
inefficient and unstable in high-speed wide area networks 
due to its slow response with a large congestion window. 
Several congestion control proposals have already been 
suggested to solve these problems and two properties have 
been considered: TCP friendliness and scalability, to 
ensure that a protocol does not take away too much 
bandwidth from TCP, while utilizing a bandwidth of high 
speed networks efficiently. In this paper, we propose a new 
variant of TCP for a high-speed network which combines 
delay-based congestion control with loss-based congestion 
control. Our simulation results show that proposed scheme 
performs better than the existing high-speed TCP protocols 
in terms of fairness, stability and scalability, while 
providing friendliness at the same time. 
1. Introduction 

Congestion control in the Internet was  
introduced in the late 1980s by Van Jacobson. Jacobson’s 
algorithm which is implemented in the transport layer 
protocol called TCP (Transmission Control Protocol) has 
served the Internet well during a time of unprecedented 
growth. However, the algorithm was designed during a 
time when the Internet was a relatively small network 
compared to its size today. Therefore, there has been much 
interest in reexamining the role of congestion control in the 
Internet with the goal of enhancing TCP to make it scalable 
to large networks. We begin this survey with a simple 
model of a particular version of Jacobson’s algorithm 
called TCP-Reno. We show that the algorithm may not be 
stable when the network size becomes large, i.e., if the 
feedback delays are large or the capacity of the network is 
large. We then present Kelly’s model where congestion 
control is viewed as a distributed control algorithm for 
achieving fair resource allocation in a network we turn our 
attention to connection-level models of congestion control. 
In traditional congestion control models, the number of 
users on the various routes in the network is assumed to be 
fixed. In the connection level model, the number of files in 
the network is time-varying and is described by a Markov 
chain. Between the time instants when there is a file arrival 
or departure, it is assumed that congestion control occurs 
instantaneously. Thus, the connection-level model operates 
at a slower time-scale compared to the time required for 
congestion controllers to converge. Under this assumption 
of time-scale separation, we show that the Kelly model of 
resource allocation is efficient, i.e., if the total load on each 
link in the network is less than its capacity, then the 
network is stable with many users. The remarkable feature 
of the algorithm is that the complex interactions between 
the users in the network can be captured using quantities 

that can be measured easily by each individual user. Next, 
we study the stability of this congestion control mechanism 
in the presence of feedback delay. We primarily 
concentrate on a new technique using Razumikhin’s 
theorem that proves global stability of the congestion 
controllers under some assumptions on the control 
parameters. TCP has already been widely adopted as a data 
transfer protocol for the Internet. The demand for high-
speed applications such as bulk-data transfer, multimedia 
web streaming, high energy and nuclear physics, 
astronomy, bioinformatics, earth sciences, storage area 
network, and grid networking has increased.  

 
2 Related Work 

The importance of congestion control is now 
widely acknowledged and extensive research has already 
been done to enhance the performance of TCP. TCP 
congestion control is composed of two major algorithms: 
slow-start and congestion avoidance algorithms which 
allow TCP to increase the data transmission rate without 
overwhelming the network. TCP uses a variable called 
congestion window (cwnd) and cannot inject more than 
cwnd segments of unacknowledged data into the network. 
The TCP congestion avoidance algorithm is called AIMD 
and it is the basis for steady state congestion control. In the 
congestion avoidance phase, TCP increases the congestion 
window by one packet for each RTT and halves the 
congestion window in the event of a packet loss.  TCP 
congestion control high speed TCP was introduced by S. 
Floyd in [2] as a modification of the TCP congestion 
control mechanism, to improve the performance of TCP in 
fast, long delay networks.  

The high speed TCP response function is 
represented by a new additive increase and multiplicative 
decrease parameters. These parameters modify both the 
increase and decrease parameters according to the cwnd. 

 STCP was described by T. Kelly in [3]. Here, the 
congestion avoidance algorithm of the STCP is MIMD 
(Multiplicative Increase and Multiplicative Decrease). [5] 
revealed that HSTCP and STCP have a fairness problem 
when multiple flows with different RTTs are competing. 
Also, [5] introduced BIC that attempts to correct the RTT 
unfairness. BIC regards congestion control as a searching 
problem in which the system can give binary feedback 
through packet loss as to whether the current congestion 
window is larger than the network capacity. BIC uses a 
binary search scheme to quickly find an estimated 
equilibrium window size, and then slowly increases the 
congestion window.Delay-based congestion avoidance 
protocols attempt to control the congestion window based 
on RTT measurements.  
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In addition, the correlation between increased 
delays (or RTTs) and congestivelosses has recently been 
challenged [10], thereby raising serious doubtsas to the 
effectiveness of DCA algorithms given that their main 
assumption is that RTT measurements can be used to 
predict and avoid network congestion. 

 
3 High speed TCP Protocol: Mechanisms 
and Deployment 

In this section we propose a new variant of TCP 
for high-speed networks that provides high utilization, 
stability, and fairness. In contrast to TCP Vegas, high speed 
TCP uses effective RTT to avoid the effects of reverse path 
congestion. And rather than preventing packet loss as in 
TCP Vegas, for additive increase mechanism, high speed 
TCP uses a backlog as a binary feedback to determine 
whether the network is fully utilized. Also, effective RTT is 
used to refine multiplicative decrease mechanism of 
HSTCP to achieve high link utilization, while guaranteeing 
TCP friendliness comparable to that of HSTCP. 

 
3.1 Delay Measurement 

If network congestion occurs in the backward 
path, TCP Vegas-like protocols may overestimate RTT and 
unnecessarily decrease congestion window. By using the 
TCP timestamp option, our mechanism obtains samples of 
queueing delay on the forward and backward paths 
separately. Note that the sender and receiver clocks do not 
have to be synchronized since we are only interested in the 
relative time difference. By distinguishing the direction in 
which congestion occurs, eHSTCP is robust in the case of 
backward congestion. 
 
To remove the effect of reverse path congestion, we 
redefine the effective RTT 

where RTT is a newly measured round trip time, db,q is the 
backward queueing delay, db is a measured backward 
delay, and min(db) is the minimum of all measured 
backward delays. Consequently, the eRT T indicates a 
round trip time when there is no backward path 
congestion.We compute the smoothed eRTT by using an 
exponential weighted moving average (EWMA), with a 
delay smoothing parameter of 1/8. This value is typically 
used for computing the smoothed RTT for TCP. 
 
3.2 Congestion Control Based on Effective RTT 

Congestion control is implemented in the internet 
using a window flow control algorithm. A source’s window 
is the maximum number of unacknowledged packets that 
the source can inject into the network at any time. For 
example, if the window size is 1, then the source maintains 
a counter which has a maximum value of 1. The counter 
indicates the number of packets that it can send into the 
network. The counter’s value is initially equal to the 
window size. When the source sends one packet into the 
network, the counter is reduced by 1. Thus, the counter in 
this example would become zero after each packet 
transmission and the source cannot send any more packets 

into the network till the counter hits 1 again. To increment 
the counter, the source waits for the destination to 
acknowledge that it has received the packet. This is 
accomplished by sending a small packet called the ack 
packet, from the destination back to the source. Upon 
receiving the ack, the counter is incremented by 1 and thus, 
the source can again send one more packet. We use the 
term round-trip time (RTT) to refer to the amount of time 
that elapses between the instant that the source transmits a 
packet and the instant at which it receives the 
acknowledgment for the packet. The RTT consists of three 
components: the propagation delay of the packet through 
the transmission medium (which is determined by the 
distance between the source and destination), the queueing 
delay at the routers in the network and the time taken to 
process a packet at the routers in the network. Typically, 
the processing time is negligible compared to the other two 
components With a window size of 1, since one packet is 
transmitted during every RTT, the source’s data 
transmission rate is 1/RTT packets/sec. If the window is 2, 
the counter’s value is initially set to 2. Thus, the source can 
send two back-to-back packets into the network. For each 
transmitted packet, the counter is decremented by 1. Thus, 
after the first two packet transmissions, the counter is 
decremented to zero. When one of the packets is 
acknowledged and the ack reaches the source, then the 
source increments the counter by 1 and can send one more 
packet into the network. Once the new packet is 
transmitted, the counter is again decremented back to zero. 
Thus, after each ack, one packet is sent, and then, the 
source has to wait for the next ack before it can send 
another packet. If one assumes that the processing speed of 
the link is very fast and that the processing times at the 
source and destination are negligible, then the source can 
transmit two packets during every RTT. Thus, the source’s 
transmission rate is 2/RTT packets/sec. From the above 
argument, it should be clear that, if the window size is W, 
then the transmission rate can be approximated byW/RTT 
packets/sec. If the link capacity is c and the source’s 
window size W is such that W/RTT < c, then the system 
will be stable. In other words, all transmitted packets will 
be eventually processed by the link and reach the intended 
destination. However, in a general network, the available 
capacity cannot be easily determined by a source. The 
network is shared by many sources which share the 
capacities at the various links in the network. Thus, each 
source has to adaptively estimate the value of the window  
size that can be supported by the network. Since previous 
research shows that HSTCP provides acceptable bandwidth 
scalability and friendliness [2], [5], we modified HSTCP’s 
AIMD mechanisms as follows: 
Additive Increase Algorithm: 

 The TCP Vegas estimates a proper amount of 
extra data to be kept in the network pipe (i.e. backlog) and 
controls the congestion window size accordingly. The 
amount is between the two thresholds α and β, as shown in 
the following: 
 
 
 
α ≤ N = (Expected − Actual) × RTTmin ≤ β      (3) 
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where Expected is the current congestion window size 
divided by RTTmin (the minimum of all measured RTTs), 
and Actual represents the current congestion window size 
divided by the newly measured RTT. According to Little’s 
Law, N represents the backlog at the bottleneck router 
queue. Thus, TCP Vegas  tries to keep at least α packets, 
but no more than β packets queued in the network. For our 
scheme, first, to prevent throughput degradation from the 
reverse cross-traffic, we redefine N and Actual as follows:  
Actual_ = cwnd/eRT T                                    (4) 
N_ = (Expected − Actual_) × RTTmin                            
      =  cwnd × df,q/eRT T                               (5) 
where df,q is the forward queueing delay. Consequently, 
N_ and Actual_ represent the backlog and Actual, 
respectively, if there is no backward queueing delay. Since 
random noise in the RTT measurements (due to time 
resolution, OS interrupts, etc) cannot be avoidable in 
practice, FAST-like congestion control, which fully 
exploits delay to congestion control, seems unfeasible in 
most cases.  
Multiplicative Decrease Algorithm:  

After a packet loss, TCP halves the congestion 
window. If we size the router buffer to match the delay-
bandwidth product, this mechanism ensures that the buffer 
does not underflow and goes empty. However, it is 
generally impractical; because there is no clear way to get 
average RTT information (even if it exists). Moreover, in 
high-speed networks large buffers are problematic for both 
technical as well as cost reasons.  Enhanced Congestion 
Control Algorithm of TCP  suggests a backoff scheme 
which makes a more informed decision by using minimum 
and maximum RTTs [11]. The rationale of the HTCP’s 
backoff scheme is as follows: When congested, the total 
throughput through the link is given by 

 

 
where n is the number of flows and RTTmax,i is 

the maximum RTT experienced by the i’th source. After 
the backoff, the throughput is given by 
 

 
 
To ensure the buffer is empty while preventing buffer 
underflow, HTCP sets 1 − βHTCP as RTTmin/RT Tmax. 
eHSTCP, in contrast to HTCP, uses: 
 

 
 
By inspecting the raw data from our simulation results, we 
found that the measured RTTs are frequently smaller than 
the maximum RTT when a packet loss occurs. The main 
reason behind this phenomenon is TCP burstiness. From 
the equation 9, eHSTCP reduces the congestion window by 
a smaller size than HSTCP. Reducing the congestion 
window less drastically improves utilization and throughput 

fluctuation but it hurts convergence speed and TCP 
friendliness since larger window flows give up their 
bandwidth slowly. To provide comparable TCP friendliness 
and bandwidth scalability of HSTCP at least while to avoid 
drastic decreasing congestion window. 
  
4 Simulation Results and Discussion 

In this section, we compare the simulated 
performance of eHSTCP with that of HSTCP, STCP, and 
BIC. Unless explicitly stated, the same amount of 
background traffic is used for all experimental runs.  To 
reduce the phase effect and synchronized feedback, a 
significant amount of background traffic is 
 

 
 
Fig. 1. The network topology for the simulation eHSTCP: 
Enhanced Congestion Control Algorithm of TCP  used in 
both directions, along with randomized RTTs and starting 
times. For background traffic, web traffic, 25 small TCP 
flows with a limited congestion window size under 64, and 
4 long lived TCP flows are created in both directions for all 
simulations, unless otherwise specified. 
The packet size is 1000 bytes. In our experiments, 
we use N10 = כ and the safety check phase =5 × RTTmax. 
4.1 Utilization, Fairness, and Stability 

In this experiment, RTT of all flows is around 
40ms and the bottleneck bandwidth is 2.5Gbps. To evaluate 
bandwidth scalability, we measure link utilization and the 
average packet loss rate of the link between router R1 and 
R2. We also measure the fairness using Jain’s fairness 
index among high-speed TCP flows. And the sample 
standard deviation normalized by the average throughput is 
used to evaluate stability. From Table 2, it can be seen that 
link utilization of eHSTCP is relatively comparable to that 
of STCP. Also, eHSTCP shows the best performance 
among all protocols under packet loss rate evaluation 
criterion. It is found that for HSTCP, BIC, and eHSTCP, 
the fairness index is 
approximately equal to 1 and STCP has some fairness 
issues. eHSTCP stays at the fully utilized region longer and 
proposed multiplicative decrease mechanism avoids 
unnecessarily drastic decreasing of congestion window. 
Therefore, we observe that eHSTCP shows the best 
stability. 
 
 
 
 
4.2 RTT Fairness 

In this experiment, two high speed flows with a 
different RTT are used. The RTT of flow 1 is 40ms, while 
the RTT of flow 2 is computed for 120ms and 240ms. The 
bottleneck bandwidth is 1Gbps. Table 3 depicts the 
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throughput ratio of the two high-speed flows. In Table 3, 
we see the bias against connections with long RTT. As 
predicted in [5], there is a serious fairness problem with 
flows of different RTTs for high speed TCP and STCP. 
High speedTCP and STCP tend to starve long RTT flows 
under high bandwidth environments, since short RTT flows 
quickly dominate the link bandwidth, starving out the other 
flows. eHSTCP’s RTT fairness outperforms HSTCP, STCP 
and BIC. 
 
4.3 TCP Friendliness 
Transmission Control Protocol (TCP) has been widely used 
as a transport layer protocol with the explosive growth of 
the Internet. The Internet has operated stably with the TCP 
congestion control mechanism which avoids congestion 
collapse  and achieves a reasonable throughput level. In the 
next generation Internet, new services such as multimedia 
transmissions and multicast applications will require 
different service criteria: a steady bandwidth guarantee, low 
delay, and a stable delay jitter. For new services, a transport 
layer protocol should guarantee the smooth bandwidth and 
a low delay jitter. However, TCP is not proper for new 
types of services because the throughput of the AIMD 
(Additive Increase Multiplicative Decrease)-based TCP 
congestion control algorithm oscillates rapidly even for 
slight losses. In addition, TCP has a retransmission 
mechanism for reliable transmission, and the TCP 
congestion window allows for the transmission of data 
packets in bursts. However, these TCP mechanisms 
increase throughput oscillation and delay jitter. Therefore, 
new services use UDP (User Datagram Protocol) as a 
transport layer protocol. But, since UDP has no congestion 
control mechanism, the increase of the UDP traffic for new 
services can cause network instability. TCP friendly 
protocols have been developed to overcome these defects 
of the current transport layer protocols for new services. 
TCP friendly congestion control protocols are designed to 
satisfy the following design issues. First, friendliness with 
the existing TCP should be provided. Since the Internet has 
been operated stably with the TCP congestion control 
mechanism to prevent congestion collapse, introducing a 
new protocol should not cause instability of the network. In 
addition, a TCP friendly protocol should not harm the 
conformant TCP throughput. Second, smoothness of the 
transmission rate should be satisfied. Rapid changes in the 
transmission rate deteriorate the service quality by 
increasing delay and delay jitter. Also, because the 
multimedia codec has the difficulty in changing data rate 
abruptly, the transmission method of TCP is not proper for 
multimedia communication. Third, responsiveness to a 
varying network state is required. Traffic multiplexing, 
router queue length, and routing update changes constantly 
the network state. A TCP friendly protocol should be able 
to adapt to various network states. Fourth, convergence to 
the fair share should be offered. When bandwidth is 
released, the protocol should converge to the fair share 
point as fast as possible. These properties conflict in some 
sense.  

STCP achieves higher throughput for various 
scenarios but also, STCP shows the worst TCP friendliness 

followed by BIC and HSTCP in most cases. eHSTCP 
utilizes the link bandwidth as efficiently as HSTCP.  
 
4.4 More Dynamic Scenario 

In this scenario, we add 150 UDP flows with ON 
and OFF times drawn from a heavy-tailed distribution. The 
mean ON and OFF time is 1 second and the mean OFF 
time is also 1 second, with each source sending at 5Mbps 
during an ON time. Table 4 shows the percentage of the 
bandwidth shared by each flow type. And table 5 shows the 
average loss rate and the sample standard deviation 
normalized by the average throughput. BIC searches the 
equilibrium congestion window size by using loss history. 
In a dynamic scenario, loss history might be out of date, 
and thus unused bandwidth increases in BIC scenario. Note 
that the bandwidth scalability of eHSTCP is comparable to 
that of STCP and also, eHSTCP is the friendliest protocol 
of all the high-speed TCP protocols. To summarize, 
eHSTCP provides good TCP friendliness for all 
bandwidths while providing bandwidth scalability, which is 
comparable to STCP in high-speed environments. 
 
5 Conclusion 

In this paper, we propose a new variant of TCP 
for high-speed network which combines delay-based 
congestion control with loss-based congestion control. 
Although existing high-speed TCP schemes solve 
bandwidth scalability to some degree, there are still 
problems with fairness, friendliness, and stability. We 
define the effective RTT as the RTT that may be measured 
if there is no backward queueing delay along the path. 
Then, we refine HSTCP’s AIMD mechanism. Since delay 
is error-prone, proposed additive increase algorithm uses 
effective RTT as binary feedback signal as to whether a 
network is full utilized. Proposed additive increase 
mechanism provides enhanced stability, reduced packet 
loss rate, and TCP friendliness. To guarantee the 
comparable TCP friendliness and scalability of HSTCP at 
least while to avoid drastic decreasing congestion window, 
proposed multiplicative decrease algorithm uses the 
effective RTT and deploys the safety check phase. We have 
shown through simulations that 
the proposed scheme outperforms other high-speed TCPs in 
terms of fairness, friendliness, and stability, while utilizing 
a link bandwidth efficiently. 
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