
Department Of Computer Applications (MCA), K.S.R College of Engineering
“BOOM 2K8” Research Journal on Computer Engineering, March 2008. Page 24

TCP - Congestion Control Algorithm for Enhancing

 High-Speed Networks
 V.Sasirekha , Dr.C.Chandrasekar

Department of MCA, K.S.R College of Engineering,Tiruchengode.

v_sasirekha@hotmail.com

Abstract
 Current TCP congestion control can be
inefficient and unstable in high-speed wide area networks
due to its slow response with a large congestion window.
Several congestion control proposals have already been
suggested to solve these problems and two properties have
been considered: TCP friendliness and scalability, to
ensure that a protocol does not take away too much
bandwidth from TCP, while utilizing a bandwidth of high
speed networks efficiently. In this paper, we propose a new
variant of TCP for a high-speed network which combines
delay-based congestion control with loss-based congestion
control. Our simulation results show that proposed scheme
performs better than the existing high-speed TCP protocols
in terms of fairness, stability and scalability, while
providing friendliness at the same time.
1. Introduction

Congestion control in the Internet was
introduced in the late 1980s by Van Jacobson. Jacobson’s
algorithm which is implemented in the transport layer
protocol called TCP (Transmission Control Protocol) has
served the Internet well during a time of unprecedented
growth. However, the algorithm was designed during a
time when the Internet was a relatively small network
compared to its size today. Therefore, there has been much
interest in reexamining the role of congestion control in the
Internet with the goal of enhancing TCP to make it scalable
to large networks. We begin this survey with a simple
model of a particular version of Jacobson’s algorithm
called TCP-Reno. We show that the algorithm may not be
stable when the network size becomes large, i.e., if the
feedback delays are large or the capacity of the network is
large. We then present Kelly’s model where congestion
control is viewed as a distributed control algorithm for
achieving fair resource allocation in a network we turn our
attention to connection-level models of congestion control.
In traditional congestion control models, the number of
users on the various routes in the network is assumed to be
fixed. In the connection level model, the number of files in
the network is time-varying and is described by a Markov
chain. Between the time instants when there is a file arrival
or departure, it is assumed that congestion control occurs
instantaneously. Thus, the connection-level model operates
at a slower time-scale compared to the time required for
congestion controllers to converge. Under this assumption
of time-scale separation, we show that the Kelly model of
resource allocation is efficient, i.e., if the total load on each
link in the network is less than its capacity, then the
network is stable with many users. The remarkable feature
of the algorithm is that the complex interactions between
the users in the network can be captured using quantities

that can be measured easily by each individual user. Next,
we study the stability of this congestion control mechanism
in the presence of feedback delay. We primarily
concentrate on a new technique using Razumikhin’s
theorem that proves global stability of the congestion
controllers under some assumptions on the control
parameters. TCP has already been widely adopted as a data
transfer protocol for the Internet. The demand for high-
speed applications such as bulk-data transfer, multimedia
web streaming, high energy and nuclear physics,
astronomy, bioinformatics, earth sciences, storage area
network, and grid networking has increased.

2 Related Work

The importance of congestion control is now
widely acknowledged and extensive research has already
been done to enhance the performance of TCP. TCP
congestion control is composed of two major algorithms:
slow-start and congestion avoidance algorithms which
allow TCP to increase the data transmission rate without
overwhelming the network. TCP uses a variable called
congestion window (cwnd) and cannot inject more than
cwnd segments of unacknowledged data into the network.
The TCP congestion avoidance algorithm is called AIMD
and it is the basis for steady state congestion control. In the
congestion avoidance phase, TCP increases the congestion
window by one packet for each RTT and halves the
congestion window in the event of a packet loss. TCP
congestion control high speed TCP was introduced by S.
Floyd in [2] as a modification of the TCP congestion
control mechanism, to improve the performance of TCP in
fast, long delay networks.

The high speed TCP response function is
represented by a new additive increase and multiplicative
decrease parameters. These parameters modify both the
increase and decrease parameters according to the cwnd.

 STCP was described by T. Kelly in [3]. Here, the
congestion avoidance algorithm of the STCP is MIMD
(Multiplicative Increase and Multiplicative Decrease). [5]
revealed that HSTCP and STCP have a fairness problem
when multiple flows with different RTTs are competing.
Also, [5] introduced BIC that attempts to correct the RTT
unfairness. BIC regards congestion control as a searching
problem in which the system can give binary feedback
through packet loss as to whether the current congestion
window is larger than the network capacity. BIC uses a
binary search scheme to quickly find an estimated
equilibrium window size, and then slowly increases the
congestion window.Delay-based congestion avoidance
protocols attempt to control the congestion window based
on RTT measurements.

Department Of Computer Applications (MCA), K.S.R College of Engineering
“BOOM 2K8” Research Journal on Computer Engineering, March 2008. Page 25

In addition, the correlation between increased
delays (or RTTs) and congestivelosses has recently been
challenged [10], thereby raising serious doubtsas to the
effectiveness of DCA algorithms given that their main
assumption is that RTT measurements can be used to
predict and avoid network congestion.

3 High speed TCP Protocol: Mechanisms
and Deployment

In this section we propose a new variant of TCP
for high-speed networks that provides high utilization,
stability, and fairness. In contrast to TCP Vegas, high speed
TCP uses effective RTT to avoid the effects of reverse path
congestion. And rather than preventing packet loss as in
TCP Vegas, for additive increase mechanism, high speed
TCP uses a backlog as a binary feedback to determine
whether the network is fully utilized. Also, effective RTT is
used to refine multiplicative decrease mechanism of
HSTCP to achieve high link utilization, while guaranteeing
TCP friendliness comparable to that of HSTCP.

3.1 Delay Measurement

If network congestion occurs in the backward
path, TCP Vegas-like protocols may overestimate RTT and
unnecessarily decrease congestion window. By using the
TCP timestamp option, our mechanism obtains samples of
queueing delay on the forward and backward paths
separately. Note that the sender and receiver clocks do not
have to be synchronized since we are only interested in the
relative time difference. By distinguishing the direction in
which congestion occurs, eHSTCP is robust in the case of
backward congestion.

To remove the effect of reverse path congestion, we
redefine the effective RTT

where RTT is a newly measured round trip time, db,q is the
backward queueing delay, db is a measured backward
delay, and min(db) is the minimum of all measured
backward delays. Consequently, the eRT T indicates a
round trip time when there is no backward path
congestion.We compute the smoothed eRTT by using an
exponential weighted moving average (EWMA), with a
delay smoothing parameter of 1/8. This value is typically
used for computing the smoothed RTT for TCP.

3.2 Congestion Control Based on Effective RTT

Congestion control is implemented in the internet
using a window flow control algorithm. A source’s window
is the maximum number of unacknowledged packets that
the source can inject into the network at any time. For
example, if the window size is 1, then the source maintains
a counter which has a maximum value of 1. The counter
indicates the number of packets that it can send into the
network. The counter’s value is initially equal to the
window size. When the source sends one packet into the
network, the counter is reduced by 1. Thus, the counter in
this example would become zero after each packet
transmission and the source cannot send any more packets

into the network till the counter hits 1 again. To increment
the counter, the source waits for the destination to
acknowledge that it has received the packet. This is
accomplished by sending a small packet called the ack
packet, from the destination back to the source. Upon
receiving the ack, the counter is incremented by 1 and thus,
the source can again send one more packet. We use the
term round-trip time (RTT) to refer to the amount of time
that elapses between the instant that the source transmits a
packet and the instant at which it receives the
acknowledgment for the packet. The RTT consists of three
components: the propagation delay of the packet through
the transmission medium (which is determined by the
distance between the source and destination), the queueing
delay at the routers in the network and the time taken to
process a packet at the routers in the network. Typically,
the processing time is negligible compared to the other two
components With a window size of 1, since one packet is
transmitted during every RTT, the source’s data
transmission rate is 1/RTT packets/sec. If the window is 2,
the counter’s value is initially set to 2. Thus, the source can
send two back-to-back packets into the network. For each
transmitted packet, the counter is decremented by 1. Thus,
after the first two packet transmissions, the counter is
decremented to zero. When one of the packets is
acknowledged and the ack reaches the source, then the
source increments the counter by 1 and can send one more
packet into the network. Once the new packet is
transmitted, the counter is again decremented back to zero.
Thus, after each ack, one packet is sent, and then, the
source has to wait for the next ack before it can send
another packet. If one assumes that the processing speed of
the link is very fast and that the processing times at the
source and destination are negligible, then the source can
transmit two packets during every RTT. Thus, the source’s
transmission rate is 2/RTT packets/sec. From the above
argument, it should be clear that, if the window size is W,
then the transmission rate can be approximated byW/RTT
packets/sec. If the link capacity is c and the source’s
window size W is such that W/RTT < c, then the system
will be stable. In other words, all transmitted packets will
be eventually processed by the link and reach the intended
destination. However, in a general network, the available
capacity cannot be easily determined by a source. The
network is shared by many sources which share the
capacities at the various links in the network. Thus, each
source has to adaptively estimate the value of the window
size that can be supported by the network. Since previous
research shows that HSTCP provides acceptable bandwidth
scalability and friendliness [2], [5], we modified HSTCP’s
AIMD mechanisms as follows:
Additive Increase Algorithm:

 The TCP Vegas estimates a proper amount of
extra data to be kept in the network pipe (i.e. backlog) and
controls the congestion window size accordingly. The
amount is between the two thresholds α and β, as shown in
the following:

α ≤ N = (Expected − Actual) × RTTmin ≤ β (3)

Department Of Computer Applications (MCA), K.S.R College of Engineering
“BOOM 2K8” Research Journal on Computer Engineering, March 2008. Page 26

where Expected is the current congestion window size
divided by RTTmin (the minimum of all measured RTTs),
and Actual represents the current congestion window size
divided by the newly measured RTT. According to Little’s
Law, N represents the backlog at the bottleneck router
queue. Thus, TCP Vegas tries to keep at least α packets,
but no more than β packets queued in the network. For our
scheme, first, to prevent throughput degradation from the
reverse cross-traffic, we redefine N and Actual as follows:
Actual_ = cwnd/eRT T (4)
N_ = (Expected − Actual_) × RTTmin
 = cwnd × df,q/eRT T (5)
where df,q is the forward queueing delay. Consequently,
N_ and Actual_ represent the backlog and Actual,
respectively, if there is no backward queueing delay. Since
random noise in the RTT measurements (due to time
resolution, OS interrupts, etc) cannot be avoidable in
practice, FAST-like congestion control, which fully
exploits delay to congestion control, seems unfeasible in
most cases.
Multiplicative Decrease Algorithm:

After a packet loss, TCP halves the congestion
window. If we size the router buffer to match the delay-
bandwidth product, this mechanism ensures that the buffer
does not underflow and goes empty. However, it is
generally impractical; because there is no clear way to get
average RTT information (even if it exists). Moreover, in
high-speed networks large buffers are problematic for both
technical as well as cost reasons. Enhanced Congestion
Control Algorithm of TCP suggests a backoff scheme
which makes a more informed decision by using minimum
and maximum RTTs [11]. The rationale of the HTCP’s
backoff scheme is as follows: When congested, the total
throughput through the link is given by

where n is the number of flows and RTTmax,i is

the maximum RTT experienced by the i’th source. After
the backoff, the throughput is given by

To ensure the buffer is empty while preventing buffer
underflow, HTCP sets 1 − βHTCP as RTTmin/RT Tmax.
eHSTCP, in contrast to HTCP, uses:

By inspecting the raw data from our simulation results, we
found that the measured RTTs are frequently smaller than
the maximum RTT when a packet loss occurs. The main
reason behind this phenomenon is TCP burstiness. From
the equation 9, eHSTCP reduces the congestion window by
a smaller size than HSTCP. Reducing the congestion
window less drastically improves utilization and throughput

fluctuation but it hurts convergence speed and TCP
friendliness since larger window flows give up their
bandwidth slowly. To provide comparable TCP friendliness
and bandwidth scalability of HSTCP at least while to avoid
drastic decreasing congestion window.

4 Simulation Results and Discussion

In this section, we compare the simulated
performance of eHSTCP with that of HSTCP, STCP, and
BIC. Unless explicitly stated, the same amount of
background traffic is used for all experimental runs. To
reduce the phase effect and synchronized feedback, a
significant amount of background traffic is

Fig. 1. The network topology for the simulation eHSTCP:
Enhanced Congestion Control Algorithm of TCP used in
both directions, along with randomized RTTs and starting
times. For background traffic, web traffic, 25 small TCP
flows with a limited congestion window size under 64, and
4 long lived TCP flows are created in both directions for all
simulations, unless otherwise specified.
The packet size is 1000 bytes. In our experiments,
we use N10 = כ and the safety check phase =5 × RTTmax.
4.1 Utilization, Fairness, and Stability

In this experiment, RTT of all flows is around
40ms and the bottleneck bandwidth is 2.5Gbps. To evaluate
bandwidth scalability, we measure link utilization and the
average packet loss rate of the link between router R1 and
R2. We also measure the fairness using Jain’s fairness
index among high-speed TCP flows. And the sample
standard deviation normalized by the average throughput is
used to evaluate stability. From Table 2, it can be seen that
link utilization of eHSTCP is relatively comparable to that
of STCP. Also, eHSTCP shows the best performance
among all protocols under packet loss rate evaluation
criterion. It is found that for HSTCP, BIC, and eHSTCP,
the fairness index is
approximately equal to 1 and STCP has some fairness
issues. eHSTCP stays at the fully utilized region longer and
proposed multiplicative decrease mechanism avoids
unnecessarily drastic decreasing of congestion window.
Therefore, we observe that eHSTCP shows the best
stability.

4.2 RTT Fairness

In this experiment, two high speed flows with a
different RTT are used. The RTT of flow 1 is 40ms, while
the RTT of flow 2 is computed for 120ms and 240ms. The
bottleneck bandwidth is 1Gbps. Table 3 depicts the

Department Of Computer Applications (MCA), K.S.R College of Engineering
“BOOM 2K8” Research Journal on Computer Engineering, March 2008. Page 27

throughput ratio of the two high-speed flows. In Table 3,
we see the bias against connections with long RTT. As
predicted in [5], there is a serious fairness problem with
flows of different RTTs for high speed TCP and STCP.
High speedTCP and STCP tend to starve long RTT flows
under high bandwidth environments, since short RTT flows
quickly dominate the link bandwidth, starving out the other
flows. eHSTCP’s RTT fairness outperforms HSTCP, STCP
and BIC.

4.3 TCP Friendliness
Transmission Control Protocol (TCP) has been widely used
as a transport layer protocol with the explosive growth of
the Internet. The Internet has operated stably with the TCP
congestion control mechanism which avoids congestion
collapse and achieves a reasonable throughput level. In the
next generation Internet, new services such as multimedia
transmissions and multicast applications will require
different service criteria: a steady bandwidth guarantee, low
delay, and a stable delay jitter. For new services, a transport
layer protocol should guarantee the smooth bandwidth and
a low delay jitter. However, TCP is not proper for new
types of services because the throughput of the AIMD
(Additive Increase Multiplicative Decrease)-based TCP
congestion control algorithm oscillates rapidly even for
slight losses. In addition, TCP has a retransmission
mechanism for reliable transmission, and the TCP
congestion window allows for the transmission of data
packets in bursts. However, these TCP mechanisms
increase throughput oscillation and delay jitter. Therefore,
new services use UDP (User Datagram Protocol) as a
transport layer protocol. But, since UDP has no congestion
control mechanism, the increase of the UDP traffic for new
services can cause network instability. TCP friendly
protocols have been developed to overcome these defects
of the current transport layer protocols for new services.
TCP friendly congestion control protocols are designed to
satisfy the following design issues. First, friendliness with
the existing TCP should be provided. Since the Internet has
been operated stably with the TCP congestion control
mechanism to prevent congestion collapse, introducing a
new protocol should not cause instability of the network. In
addition, a TCP friendly protocol should not harm the
conformant TCP throughput. Second, smoothness of the
transmission rate should be satisfied. Rapid changes in the
transmission rate deteriorate the service quality by
increasing delay and delay jitter. Also, because the
multimedia codec has the difficulty in changing data rate
abruptly, the transmission method of TCP is not proper for
multimedia communication. Third, responsiveness to a
varying network state is required. Traffic multiplexing,
router queue length, and routing update changes constantly
the network state. A TCP friendly protocol should be able
to adapt to various network states. Fourth, convergence to
the fair share should be offered. When bandwidth is
released, the protocol should converge to the fair share
point as fast as possible. These properties conflict in some
sense.

STCP achieves higher throughput for various
scenarios but also, STCP shows the worst TCP friendliness

followed by BIC and HSTCP in most cases. eHSTCP
utilizes the link bandwidth as efficiently as HSTCP.

4.4 More Dynamic Scenario

In this scenario, we add 150 UDP flows with ON
and OFF times drawn from a heavy-tailed distribution. The
mean ON and OFF time is 1 second and the mean OFF
time is also 1 second, with each source sending at 5Mbps
during an ON time. Table 4 shows the percentage of the
bandwidth shared by each flow type. And table 5 shows the
average loss rate and the sample standard deviation
normalized by the average throughput. BIC searches the
equilibrium congestion window size by using loss history.
In a dynamic scenario, loss history might be out of date,
and thus unused bandwidth increases in BIC scenario. Note
that the bandwidth scalability of eHSTCP is comparable to
that of STCP and also, eHSTCP is the friendliest protocol
of all the high-speed TCP protocols. To summarize,
eHSTCP provides good TCP friendliness for all
bandwidths while providing bandwidth scalability, which is
comparable to STCP in high-speed environments.

5 Conclusion

In this paper, we propose a new variant of TCP
for high-speed network which combines delay-based
congestion control with loss-based congestion control.
Although existing high-speed TCP schemes solve
bandwidth scalability to some degree, there are still
problems with fairness, friendliness, and stability. We
define the effective RTT as the RTT that may be measured
if there is no backward queueing delay along the path.
Then, we refine HSTCP’s AIMD mechanism. Since delay
is error-prone, proposed additive increase algorithm uses
effective RTT as binary feedback signal as to whether a
network is full utilized. Proposed additive increase
mechanism provides enhanced stability, reduced packet
loss rate, and TCP friendliness. To guarantee the
comparable TCP friendliness and scalability of HSTCP at
least while to avoid drastic decreasing congestion window,
proposed multiplicative decrease algorithm uses the
effective RTT and deploys the safety check phase. We have
shown through simulations that
the proposed scheme outperforms other high-speed TCPs in
terms of fairness, friendliness, and stability, while utilizing
a link bandwidth efficiently.

References
1. Katabi D., Handley M., and Rohrs C.: Internet

Congestion Control for High Bandwidth-Delay Product
Networks. In Proceedings of the ACM SIGCOMM,
pp. 89-102, (2002).

2. Floyd S.: HighSpeed TCP for Large Congestion
Windows. RFC3649, (2003).

3. Kelly T.: Scalable TCP: Improving Performance in
Highspeed Wide Area Networks. ACM SIGCOMM
Computer Communication Review, vol.33, pp. 83-91,
(2003).

4. Jin C., Wei D. X. and Low S. H.: FAST TCP:
motivation, architecture, algorithms, performance. In
Proceedings of the IEEE Infocom, vol. 4, pp. 2490-
2501, (2004).

Department Of Computer Applications (MCA), K.S.R College of Engineering
“BOOM 2K8” Research Journal on Computer Engineering, March 2008. Page 28

5. Xu L., Harfoush K., and Rhee I.: Binary Increase
Congestion Control for Fast, Long Distance Networks.
In Proceedings of IEEE Infocom, vol. 4, pp. 2514-
2524, (2004).

6. Brakmo L. and Peterson L.: TCP Vegas: End to End
Congestion Avoidance on a Global Internet. IEEE
Journal on Selected Areas in

7. Hengartner U., Bolliger J., and Gross T.: TCP Vegas
Revisited. In Proceedings of IEEE Infocom, vol. 3, pp.
1546-1555, (2000).

8. Mo J., La R., Anantharam V., and Walrand J.: Analysis
and Comparison of TCP Reno and Vegas. In
Proceedings of IEEE Infocom, vol. 3, pp. 1546-1555,
(2000).

9. . Feng W. and Vanichpun S.: Enabling compatibility
between TCP Reno and TCP Vegas. In Proceedings of
Symposium on Applications and the Internet, pp. 301-
308, (2003).

10. Martin J., Nilsson A., and Rhee I.: Delay Based
Congestion Avoidance for TCP. IEEE/ACM
Transactions on Networking, vol. 11, no. 3, pp. 356-
369, (2003).

11. Shorten R. and Leith D.: H-TCP: TCP for high-speed
and long-distance networks. In Proceedings of the
PFLDnet, (2004).

12. Choi Y., Lee K., and Cho Y.: Performance Evaluation
of High-Speed TCP Protocols with Pacing. Lecture
Notes in Computer Science, vol. 3332, pp. 322-329,
(2004).

